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To our teachers and friends... 





Preface 

Author's preface to the English Edition 

It is my great pleasure to see the book, written together with Lev Asla-
mazov, to appear in English. The original Russian edition, followed by the 
Italian one, were accepted enthusiastically by readers and I hope that the 
wide English-speaking audience will find the book to merit attention too. 
It would be a fair tribute to the good memory of my friend and coauthor. 

The reasons which pushed us to write this book were curiousity and 
our wish to share with others the admiration for the beauty of Physics in 
its manifestations in the Nature. The authors have devoted a lot of time 
to physics teaching of students of various levels, from gifted beginners to 
mature PhD students. All this experience has convinced us that, besides the 
evident necessity of regular and careful study of the discipline, an "artistic" 
approach, in which the teacher (or the author) proves the importance of 
Physics in habitual everyday phenomena, is vital. I hope that we succeeded 
to pass to the reader our feeling of Physics not only on the cover but also 
in the text of the book. 

I would like to express my deep gratitude to many friends and colleagues, 
without whom this edition would not appear. In first turn this is my old and 
dear friend Dr. Alex Abrikosov (Jr.), whose enthusiasm, thorough scientific 
care and translation gave birth of the English version. His contrubution to 
the project was considerably enforced by the collaboration of my other 
friend and our common alumnus Dr. Dmitriy Znamenski, who has become 
almost a native speaker of English last years. 

I would like to acknowledge the contribution of my coauthours and 
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friends Professor A. Buzdin, Dr. C. Camerlingo, Dr. A. Malyarovski and 
my old teacher of Physics Dr. A. Shapiro. Several chapters of this book 
were written basing on our mutual publications in different journals. 

Special thanks are addressed to my friend Professor A. Rigamonti, 
whose encyclopaedic erudition and enthusiasm permitted to realize the Ital
ian edition of the book and considerably adorned it. 

Finally I would like to thank warmly my Italian and Russian editors: 
Dr. D. De Bona, Dr. T. Petrova, Dr. V. Tikhomirova and Dr. L. Panyushk-
ina without whose professionalism and collaboration in preraration of pre
vious editions the present one would not appear. 

In conclusion I would like to cordially mention on behalf of mine and 
Alex Abrikosov (Jr.) three more people. Two of them are Alex's parents 
and our teachers of Physics and life, Alexei and Tatyana Abrikosov. The 
third one is our common friend from University times Serguei Pokrovski. 
These people played the foremost part in our formation. 

A. A. Varlamov, 

(Rome, 2000). 

From the foreword to the Russian edition 

The science of physics was at the head of scientific and technical revolution 
of the twentieth century. Nowadays successes of physics continue to deter
mine the direction of forthcoming progress of the humanity. The bright 
example of that is the recent discovery of the high-temperature supercon
ductivity which may quite soon radically change the entire edifice of modern 
technology. 

However, delving deeper into the mysteries of the macrocosm and mi-
croparticles, scientists move further and further away form the traditional 
school physics with its transformers and bodies, thrown at an angle to the 
horizontal, namely, from what most of the people believe to be physics. The 
goal of popular literature is to bridge the gap, to open to curious readers the 
excellence of modern physics and to demonstrate its major achievements. 
The difficult task that does not tolerate dabbling. 

The book in your hands develops the best traditions of this kind of 
literature. Written by working theoretical physicists and, in the same time, 
the dedicated popularizers of scientific knowledge, clear and captivating in 
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manner, it brings the reader to the latest achievements of the quantum 
solid-state physics; but on the way it shows how laws of physics reveal 
themselves even in trivial, at first glance, episodes and natural phenomena 
around us. And what is most important, it shows the world with the eyes 
of scientists, capable to "prove the harmony by algebra". 

It was a great loss that one of the authors of the book, the well-known 
specialist in the theory of superconductivity, professor L. G. Aslamazov, 
who for a long time was the vice-editor of the "Quantum" popular journal, 
did not live till the book coming out. 

I hope that the most different readers, ranging from high-school students 
to professional physicists, will find this book, marked by its extremely vast 
scope of encompassed questions, a real interesting, enjoyable and rewarding 
reading. 

Academician A. A. Abrikosov, 

(Moscow, 1987). 

Translator's note 

The offer to translate this book into English was a great honor for me. 
Now I'm your interpreter in the marvelous land of physics. But this is not 
a simple coincidence. 

First of all, for me physics is a sort of "family business" that you, no 
doubt, might have guessed. Many of people, whom I remember warmly 
from my first days, afterwards turned to be physicists. As a ten years 
old schoolboy I remember (then postgraduate, later professor) Lev Asla
mazov sunbathing on the Odessa beacha, then, in the high-school, I met 
my best friend Andrei Varlamov. We made our decision and both entered 
the Moscow Physical-Technical Institute. For long hours we discussed and 
argued about many things related and not related to physics. Some of the 
topics in this book awake remembrances of those days. 

Not the last role in this "physical orientation" belonged to the newly 

established in Moscow by the enthusiastic young team popular journal 

"Kvant". (Its English translation is known now as "Quantum".) L. Asia-

Odessa is the city on the Black Sea coast where traditional spring symposia on theo

retical physics were held. 
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mazov was at the very origin of it and his article "Meandering down to 
the sea" appeared in the first issue. Getting older we started writing our
selves. And almost every chapter of this book once has appeared under the 
"Kvant's" cover. 

Somewhere among papers I keep the draft of my first popular paper. 
Leva (as everybody called him) rejected it, explaining, that we must not 
simply write about what we knew from textbooks, but find new bright and 
clear illustrations to our knowledge. According to him, this was the main 
and most difficult task in popularization of science. And, as you shall see, 
this is the spirit of the present book. 

The love to physics swung the balance in favor of translating the book 
being not a native English speaker. I hope that a share of nonlinguistic 
knowledge that I tried to invest in the text will, at least partially, compen
sate its "Russian flavor", and you will rather be amused than annoyed by 
some inevitable slips. 

Sure enough I would not take the risk alone and what you read is a 
result of real collaboration with my fellow translator Dmitriy Znamensky 
from whom I learned so much. Writing this note myself is only the privilege 
of the old acquaintance and this must by no means belittle his contribution. 
You may feel his vivid style yourself when reading Chapters 8-12, 14-16 
and Chapter 21. 

But to the work on translation we tried to commemorate the great 
scientists of the past and supplied the text with short biographical foot
notes. 

A. A. Abrikosov, jr., (—A. A.). 

(Moscow, 2000). 



Contents 

Preface vii 

Part I Outdoor Physics 1 

Chapter 1 Meandering Down to the Sea 5 

Chapter 2 Rivers from Lakes 13 

Chapter 3 The Oceanic Phone Booth 15 

Chapter 4 In the Blue 25 

Chapter 5 The Moon-Glades 37 

Chapter 6 The Fucault Pendulum and the Baer Law 41 

Chapter 7 The Moon-Brake 51 

Part II Saturday Night Physics 55 

Chapter 8 Why the Violin Sings 59 

Chapter 9 The Chiming and Silent Goblets 67 

Chapter 10 The Bubble and the Droplet 75 

Chapter 11 The Mysteries of the Magic Lamp 89 

Chapter 12 Waiting for the Tea-Kettle to Boil 101 

Chapter 13 Craving Microwaved Mammoth 117 



xii Contents 

Chapter 14 The Water Mike 129 

Chapter 15 How the Waves Transmit Information 135 

Chapter 16 Why the Electric Power Lines are Droning 143 

Chapter 17 The Footprints on the Sand 149 

Chapter 18 How to Prevent Snowdrifts 161 

Chapter 19 The Incident in the Train 163 

Part III Windows to the Microworld 171 

Chapter 20 The Uncertainty Relation 175 

Chapter 21 On the Snowballs, Nuts, Bubbles and . . . Liquid 187 
Helium 

Chapter 22 The Superconductivity Passion at the End of the 195 
Millenium 

Chapter 23 What is SQUID? 209 

Chapter 24 The Superconducting Magnets 221 

Afterword 233 



PART I 

Outdoor physics 





From the Srst part of the book the reader will learn why 
rivers are winding and how they wash their banks out, why the 
sky is blue and the white horses are white. We are going to tell 
you about properties of the ocean, about winds and the role of 
the Earth's rotation. 

In a word we shall present examples of how laws of physics 
work on a world scale. 
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Chapter 1 

Meandering down to the sea 

Have you ever seen a straight river without bends? Of course a short section 
of a river may cut straight but no rivers have no bends at all. Even if the 
river flows through a plain it usually loops around and the bends often 
repeat periodically. Moreover, as a rule one bank at the bend is steep while 
the other slopes gently. How could one explain these peculiarities of river 
behavior? 

Hydrodynamics is the branch of physics that deals with the motion of 
liquids. Although now it's a well-developed science, rivers are too compli
cated natural objects and even hydrodynamics can't explain every feature 
of behavior. Nevertheless, it can answer many questions. 

You may be surprised to learn that even great Albert Einstein* gave 
time to the problem of meanders. In the report delivered in 1926 at a 
meeting of the Prussian Academy of Sciences, he compared the motion of 
river water to swirling of water in a glass. The analogy allowed him to 
explain why rivers choose the twisted paths. 

Let's try to understand this too, at least qualitatively. And let's start 
with a glass of tea. 

1.1 Tea-leaves in a glass 

Make a glass of tea with loose tea-leaves (no tea-bags!), stir it well, and take 
the spoon off. The brew will gradually stop and the tea-leaves will gather 

a A. Einstein, (1879-1955), German physicist, US citizen from 1940; creator of the theory 
of relativity; Nobel Prize 1921. 

5 



6 Meandering down to the sea 

in the center of the bottom. What made them come there? To answer this 
question let us first determine what shape takes the surface as the liquid 
swirls in the glass. 

The tea-cup-experiment shows that the surface — in our case of the 
tea — gets curved. The reason is clear. In order to make particles of 
water move circularly, the net force acting on each of them must provide 
a centripetal acceleration. Consider a cube of situated in the liquid at a 
distance r from the axis of rotation, Fig. 1.1, a. Let the mass of tea in it be 
Am. If the angular speed of rotation is u then the centripetal acceleration 
of the cube is u2 r. It comes as the result of the difference of the pressures 
acting onto the faces of the cube (the left and right faces in Fig. 1.1 a). So, 

mu2 r = Fi - F2 = (Pi - P2) AS, (1.1) 

where AS is the area of the face. The pressures Pi and Pi are determined 
by the distances h\ and hi from the surface of the liquid: 

P1=pgh1 and Pi=pgh2, (1.2) 

where p is the density of the liquid and g is the free fall acceleration. As 
soon as the force -Pi must be greater than F2, so fti must exceed hi and 
the surface of the rotating liquid must be curved, as shown in Fig. 1.1. The 
faster the rotation is, the greater is the curvature of the surface. 

One can find the shape of the curved surface of the revolving liquid. It 
turns out to be a paraboloid — that is, a surface with a parabolic cross 
sectionb. 

As long as we continue stirring the tea with the spoon, we keep it 
swirling. But when we remove the spoon the viscous friction between layers 
of the liquid and the friction against the walls and bottom of the glass will 
convert the kinetic energy of liquid into heat, and the motion will gradually 
come to rest. 

As the rotation slows down, the surface of the liquid flattens. In the 
mean time vortex currents directed as shown in Fig. 1.1, 6 appear in the 
liquid. The vortex currents are formed because of the nonuniform decel
eration of the liquid at the bottom of the glass and at the surface. Near 
the bottom, where the friction is stronger, the liquid slows down more ef
fectively than at the surface. So, despite being at equal distances from the 

bThe form of the surface is parabolic only if the liquid is rotated together with the glass 
as a whole. This is called rigid rotation. —A. A. 



How river-beds change 
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F ig . 1 .1 : a Hydros ta t ic forces ac t i ng on a 
p a r t i c l e in r o t a t i n g l i q u i d , b Vortex 
cu r ren t s a r i s i n g as r o t a t i o n slows down. 

axis of rotation particles of liquid acquire different speeds: the ones that 
are closer to the bottom become slower than those near the surface. How
ever the net force due to the pressure differences is the same for all these 
particles. This force can't cause the required centripetal acceleration of all 
the particles at once (as in was in the case of the uniform rotation with the 
same angular speed). Near the surface the angular speed is too large, and 
particles of water are thrown to the sides of the glass; near the bottom the 
angular speed is too low, and the resultant force makes water move to the 
center. 

Now it is clear why tea-leaves gather in the middle of the bottom, 
Fig. (1.2). They are drawn there by vortex currents that arise due to 
the nonuniform deceleration. Of course, our analysis is simplified but it 
accurately grasps the main points. 

1.2 How river-beds change 

Let's consider the motion of water at a river bend. The picture lively 
resembles what we have observed in our glass of tea. The surface of water 
inclines inside the bend in order that pressure differences produced the 
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Fig, : . 2 : The tea-cup experiment, Vortex current 
drive- tea- leaves to the ceirt,er of the bottom. 

necessary centripetal accelerations- (Figure 1.3 shows schematically a cross 
section of bending river.) Quite similarly to the tea glass, velocity of water 
near the bottom is less than that near the surface of the river (distribution 
of velocities with depth is shown by vectors in Fig. 1.3). Near the surface the 
net difference of hydrostatic pressures can't make the faster water particles 
follow the curve and the water is "thrown" to the outer shore (away from 
the center of the bend). Near the bottom, on the other hand, the velocity 
is small, so the water moves toward the inner shore (to the center of the 
bend). Hence additional circulation of water appears in addition to the 
main flow. The figure 1.3 shows the direction of water circulation in the 
transverse plane. 

Fig. 1.3: Cross 
sect ion of a turning 
river-bed. 
Hydrostatic forces , 
vortex currents and 
ve loc i ty d i s tr ibut ion . 

The circulation of water causes soil erosion. As a result, the outer bank 
is undermined and washed out while the soil gradually settles along the 
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inner shore, forming an ever thickening layer (remember the tea-leaves in 
the glass!). The shape of the river-bed changes so that the cross section 
resembles that shown in Fig. 1.4. It's also interesting to observe how the 
velocity of the stream varies across the river (from bank to bank). In 
straight stretches water runs most quickly in the middle of the river. At 
bends the line of fastest flow shifts outwards. This happens because it's 
more difficult to turn fast-moving water particles than slow-moving ones. 
A larger centripetal acceleration is necessary. But the greater is velocity 
of the flow, the greater is the circulation of the water, and consequently 
the soil erosion. That's why the fastest place in a river-bed is usually the 
deepest one — the fact well known by river pilots. 

F ig . 1.4: Evolution of 
a real r i v e r - b e d . 

Soil erosion along the outer bank and sedimentation along the inner one 
result in gradual shift of the entire river-bed away from the center of the 
bend increasing thereby the river meander. Figure 1.4 shows the very same 
crosssection of a real river-bed at several years intervals. You can clearly 
notice the shift of the river-bed and the increase of its meander. 

So even an occasional slight river bend — created, for example, by a 
landslide or by a fallen tree — will grow. Straight flow of a river across a 
plain is unstable. 

1.3 How meanders are formed 

The shape of a river-bed is largely determined by the relief of the terrain it 
crosses. A river passing a hilly landscape winds in order to avoid heights 
and follows valleys. It "looks for" a path with the maximum slope. 

But how do rivers flow in open country? How does the described above 
instability of straight river-bed with respect to bending influence the course 
of a stream? The instability must increase the length of the path and make 
the river wind. It's natural to think that in the ideal case (an absolutely 
flat, homogeneous terrain), a periodic curve must appear. What will it look 
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like? 
Geologists have put forth the idea that at their turns, paths of rivers 

flowing through plains should take the form of a bent ruler. 
Take a steel ruler and bring its ends together. The ruler will bend like 

it is shown in Fig. 1.5. This special form of elastic curve is called the Euler 
curve after the great mathematician Leonhard Eulerc who has analyzed it 
theoretically. The shape of the bent ruler has a wonderful property: of 
all possible curves of a fixed length connecting two given points, it has 
the minimum average curvature. If we measure the angular deflection dk, 
Fig. 1.5, at equal intervals along the curve and add up their squares then 
the sum 9\ + Q\ +... will be minimal for the Euler curve. This "economic" 
feature of the Euler curve was basic for the river-bed shape hypothesis. 

v\*' 

csr^ 

Fig. 1.5: The form of 
a bent steel ruler is 
called the Euler 
curve. 

To test this hypothesis geologists modeled a changing river-bed. They 
passed water through an artificial channel in light erosible homogeneous 
medium composed of small weakly held together particles. Soon the straight 
channel began to wander, and the shape of the bend was described by the 
Euler curve (Fig. 1.6). Of course, nobody has ever seen such a perfect 
river-bed in nature (because of the heterogeneity of the soil, for instance). 
But rivers flowing through plains usually do meander and form periodic 

CL .Euler, (1707-1783), Swiss-born mathematician and physicist; member of Berlin, 
Paris, St. Petersburg academies and of the London Royal Society; worked a long time 
in Russia. 
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structures. In Fig. 1.6 you can see a real river-bed and the Euler curve (the 
dashed line) that approximates its shape best of all. 

By the way, the word "meander" itself is of ancient origin. It comes 
from the Meander, a river in Turkey famous for its twists and turns (now 
called the Menderes). Periodic deflections of ocean currents and of brooks 
that form on surfaces of glaciers are also called meanders. In each of these 
cases, random processes in a homogeneous medium give rise to periodic 
structures; and though the reasons that bring meanders about may differ, 
the shape of resulting periodic curves is always the same. 

Show that the surface of uniformly (rigidly) revolv
ing liquid takes the parabolic form. 





Chapter 2 

Rivers from lakes 

. . . Old Baikal had more than three hundred sons and 
the sole daughter, beautiful Angara. 

The ancient legend. 

Let sceptical reader disbelieve the epigraph and search geographical 
atlases. Jokes apart, he will discover that 336 rivers fall into the lake of 
Baikal and only one, the mighty Angara, has it for the source. It turns out 
that Baikal is not the exception. No matter how many rivers fall into a lake 
only one comes out of it as a rule. 

For example many rivers run to the Ladoga lake but only Neva escapes 
it; Svir is the only outflow of the Onega lake etc. This fact may be explained. 
The outcoming water prefers the deepest river-bed and other possible exits 
are left above the level of the lake. It is hardly probable that openings of 
several would-be river-beds have the same elevation. In case of the copious 
water supply the brimming lake can send forth two streams. However such a 
situation is not steady and may take place only in relatively young (recently 
formed) lakes. Little-by-little the deeper and faster stream will wash away 
the bed increasing the outflow. As a result the level of the lake will decline 
and the weaker flow will be gradually silted. Thus only the deepest of the 
outcoming rivers will survive. 

In order that a lake was the source of two rivers it is necessary that 
their origins lay exactly at the same level. This case is called a bifurcation 
(the term is now widely used by mathematicians to indicate the doubling of 
the number of solutions of an equation). Bifurcations are uncommon and 
usually only a single river comes out of a lake. 

13 



14 Rivers from lakes 

The same laws may be applied to rivers. It is well known that rivers 
readily flow together, whereas forks are relatively infrequent. Streams al
ways prefer the steepest descending curve. The probability of splitting of 
this curve is small. Nevertheless the situation changes at the river delta 
where the main stream divides into many smaller channels. 

Try to figure out why river behaves so strange when 
approaching big lake or sea. 



Chapter 3 

The oceanic phone booth 

The walls, indeed, had ears. Or, rather, an ear. A 
round hole with a tube — a sort of secret telephone — 
conveyed every word said in the dungeon right to the 
chamber of Signore Tomato. 

Gianni Rodari, The adventures of Cipollino. 

Not so long ago — in mid-forties, to put a number on it — scientists 
from the USSR and US discovered an amazing phenomenon. Sound waves 
propagating in the ocean could sometimes be detected thousands of kilome
ters away from the source. In one of the most successful experiments, the 
sound from an underground explosion set off by scientists on the coast of 
Australia traveled halfway around the globe and was registered by another 
group of researchers in Bermuda, some 19.600 km away (a record distance 
for the propagation of pulse sound signals). This means that the intensity 
of the sound didn't change greatly as it ran away from the source. What is 
the mechanism for such long-distance propagation of sound? 

It looked as if the ocean contained an acoustic waveguide — that is, a 
channel along which sound waves traveled practically without attenuation 
(loss of strength). You have read about such a means in the epigraph. 

Another example of acoustic waveguide is the tube used on ships from 
time immemorial. The ship's captain uses a tube to give orders to the 
engine room from the bridge. It's interesting that the attenuation of sound 
traveling in air along a waveguide is so small that if we constructed a tube 
750 km long, it could serve as a "telephone" for calls between Pittsburgh 
and Detroit. But it would be inconvenient to chat over such a line, because 
your friend at the other end would have to wait a half-hour to hear your 

15 
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words. 
We should emphasize that the reflection of a wave from a waveguide's 

boundaries is a crucial feature of the waveguide: it's because of this very 
property that the wave energy doesn't scatter in all directions but follows 
the given one. 

These examples would lead us to suppose that the propagation of sound 
over extremely large distances in the ocean is due to some sort of waveguide 
mechanism. But how is such a gigantic waveguide formed? Under what 
conditions does it appear, and what are the reflective boundaries that make 
the sound waves to travel so far? 

Since the ocean surface can reflect sound fairly well, it might serve the 
upper boundary of the waveguide. The ratio of the intensity of reflected 
wave to that of a wave penetrating the interface between two media strongly 
depends on the densities and the speeds of sound in them. If the media 
differ substantially then even the sound falling normally onto a flat interface 
will be practically completely reflected. The densities of air and water differ 
a thousand times, the ratio of sound velocities in them is 4.5. Therefore 
the intensity of the normal wave passing to air from water is only 0.01 
% of the intensity of the incident sound. The reflection is still stronger 
when the wave falls onto the interface obliquely. But, of course, the ocean 
surface can't be perfectly flat because of the ever-present waves. This causes 
chaotic reflections of sound waves and disturbs the waveguide character of 
their propagation. 

The results aren't any better when the sound waves reflect at the ocean 
floor. The density of sediments at the bottom of the sea is usually within 
the range 1.24-2.0 g/cm3, and the velocity of sound propagation in these 
sediments is only 2-3% less than that in water. So when a sound wave hits 
the bottom a significant amount of its energy is absorbed. . 

Once the ocean floor poorly reflects sound it can't serve the lower bound
ary of the waveguide. 

The boundaries of the oceanic waveguide must be sought somewhere in 
between the floor and the surface. And that's where they were found. The 
boundaries turned out to be the water layers at certain depths in the ocean. 

How do sound waves reflect from the "walls" of the oceanic acoustic 
waveguide? To answer this question we'll have to examine the mechanism 
of sound propagation in the ocean. 
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3.1 Sound in water 

Up to now, as we've talked about waveguides, our unspoken assumption 
was that the speed of sound in them is constant. But the speed of sound in 
the ocean varies from 1.450 m/s to 1.540 m/s. It depends on temperature, 
salinity, hydrostatic pressure and other factors. The increase in hydrostatic 
pressure P(z) with depth z, for instance, adds to the speed of sound 1.6 m/s 
per 100 meters down. An increase in temperature also adds to the speed 
of sound. However, the water temperature, as a rule, falls rapidly as one 
descends from the well-warmed upper layers to the ocean depths, where 
the temperature is practically constant. Due to the interplay of these two 
mechanisms — the hydrostatic pressure and the temperature — the depen
dence of the sound velocity c(z) on depth in the ocean looks like that shown 
in Fig. 3.1. Near the surface the rapidly dropping temperature takes the 
upper hand. Here the speed of sound decreases with depth. As we plunge 
deeper, the rate of decrease in temperature slows, but the hydrostatic pres
sure continues to grow. At some depth the two factors balance: the speed 
of sound reaches its minimum. Deeper down the sound velocity starts to 
grow due to the rise in hydrostatic pressure. 

Fig. 3 . 1 : Velocity of 
sound c in ocean water 
depends on depth z and 
has minimum at zm. 

cm 

2m 

z' 

-H^s^t-s 
\ 

W///////J'//W//S//;S///M'/MW/J>/, 
i Fondo 

We see that the speed of sound in the ocean depends on depth and this 
influences the nature of the sound propagation. To understand how "sound 
beams" travel in the ocean, we'll turn to an optical analogy. We'll examine 
how a light beam propagates in a stack of flat parallel plates with varying 
indices of refraction. Then we'll generalize our findings to a medium with 
smoothly varying refraction index. 
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3.2 Light in water 

Let's consider a pile of flat parallel plates with varying indices of refraction 
n0 , « i , . . . nk, where n0 < nx < . . . < nk (see Fig. 3.2). Assume that the 
light beam falls onto the upper plate at an angle ao relative to the normal. 
After refraction it leaves the 0-1 boundary at an angle c*i and that is the 
incidence angle for the 1-2 boundary. Upon refracting at the next interface 
the beam hits the 2-3 boundary at an angle a 2 and so on. According to 
SnelPsa law, we have: 

sinao Wi sinai n^ sina*_i nk 

sinai n0 sma2 n\ sin a* nk-i 

Remembering that the ratio of the refraction indices of two media is the 
inverse of the ratio of the speeds of light in these media, we may rewrite 
these equations in the following form: 

sinao _ CQ sinai _ C\ s inat_i _ ck-\ 
sinai Ci' sina2 Ci'"' sina* ck 

Multiplying the series of equations by one another, we get 

s i n q 0 _ Co 

sin a* ck 

Reducing thickness of plates to zero while increasing their number to infin
ity, we'll approach the generalized law of refraction (the SnelPs law): 

c(z) sina(0) = c(0) sina(z). (3.1) 

where c(0) is the speed of light at the point where the beam enters the 
medium and c(z) is the speed of light at a distance z from the boundary. 
Thus, as a light beam propagates through an optically nonuniform medium 
with decreasing index of refraction, it more and more deflects from the 
normal. As the speed of light in the medium decreases (and the index of 
refraction increases) the beam gradually turns parallel to the interface. 

If we know how the speed of light varies in an optically nonuniform 
medium, we can use the Snell's law to find the trajectory of any beam 
in it. Sound beams propagating in an acoustically nonuniform medium, 
where the speed of sound varies, get deflected exactly in the same way. An 
example of such a medium is the ocean. 

a W. Snell van Royen, (died 1626), Dutch mathematician. 
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3.3 Water waveguides 

Now let's get back to the question of sound propagation in the oceanic 
acoustic waveguide. Imagine that the sound source is located at the depth 
zm corresponding to the minimum sound velocity (Fig. 3.3). How do the 
sound beams travel as they leave the source? The beam propagating along 
a horizontal line is straight. But the beams leaving the source at an angle 
with the horizontal will bend because of sonic refraction. Since the speed 
of sound increases both up and down from the level zm, sound beams will 
bend towards the horizontal. At a certain point the beam will get parallel 
to the horizontal and after being reflected it will turn back toward the line 
z = zm, Fig. 3.3. 

F ig . 3 . 3 : Refract ion 
of sound in 
a c o u s t i c a l l y 
nonuniform medium ( the 
sound v e l o c i t y c(z) i s 
minimal a t t he plane 
z — zm). 

Cf,C,C2 Ch 

TT 

Thus, the refraction of sound in the ocean allows a portion of the sonic 
energy emitted by the source to propagate through the water without rising 
up to the surface or dropping down to the ocean floor. This means that 
we have an oceanic acoustic waveguide. The role of "walls" waveguide is 
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played by the layers of water at the depths where the sound beams reflect. 
The level zm where the speed of sound reaches the minimum is called 

the axis of the waveguide. Usually the depths zm range from 1.000 to 
1.200 meters, but in low latitudes, where the water gets warmed deeper 
down the axis can descend down to 2.000 m. On the other hand, in high 
latitudes the influence of temperature on the distribution of the sound speed 
is noticeable only close to the surface, and therefore the axis rises to the 
depth of 200 — 500 m. In the polar latitudes it lies still closer to the surface. 

There are two different types of waveguides in the ocean. The first type 
occurs when the speed of sound near the surface (co) is less than that at 
the ocean floor (c/). This usually occurs in deep waters, where the pressure 
at the bottom reaches hundreds of atmospheres. As we mentioned above, 
sound reflects well from the water-air interface. So if the ocean surface is 
smooth (dead calm), it can serve as the upper boundary of a waveguide. 
The channel then spreads through the entire layer of water, from the surface 
to the floor (see Fig. 3.4). 

F ig . 3 .4 : Acoustic 
waveguide of t he f i r s t 
t ype : dead calm, 
Cf > co. Sound i s 
r e f l e c t e d from the 
surface and r e f r ac t ed 
a t t he bottom. 

Let's see what portion of the sound beam is "captured" by the channel. 
Start from rewriting the Snell's law as 

c(z) cosipi = Ci cos <p(z). 

where ip\ and ip(z) are the angles formed by sound rays with the horizontal 
at depths z\ and z, respectively. It's clear that y>\ = § — ai,<p(z) = § — a(z). 
If the source of sound is located on the axis of the channel (ci = Cm) then 
the last sound ray captured by the channel is the one tangent to the ocean 
floor, <p(z) = 0, as shown in Fig. 3.4. Therefore all rays that leave the 

Cg Df CtZ) 
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source at angles satisfying the condition 

^ Cm 

cosy>i > — , 
Cf 

enter the channel. 
When the water surface is rough, all sound beams will scatter from 

it. The rays leaving the surface at angles larger than <p\ will reach the 
floor and be absorbed there. Yet even in this case thanks to refraction 
the channel can capture those rays that somewhat do not reach the rough 
surface (Fig. 3.5). Then the channel spreads from the surface to a depth 
z which can be determined from the condition c(zk) = CQ. It's clear that 
such a channel captures all sound rays with angles 

fi < arccos 
CO 

Fig. 3.5: Another 

acoustic waveguide of 

the first type: rough 

sea, Cf > Co. Sound is 

refracted under the 

surface but does not 

reach the bottom. 

z* 

z" 

C0 Cf C(Z) 

bottom 

The second type of waveguide is characteristic of shallow water. It 
occurs only when the speed of sound near the surface is greater than that 
at the floor, see Fig. 3.6. The channel occupies the water layer from the 
ocean floor up to the depth zu where c(zk) = Cf. It looks like a waveguide 
of the first type flipped upside down. 

For certain types of dependencies of sound speed on depth, the waveg
uide focuses sound beams like a lens. If a sound source is located on the 
axis, the rays that have leaving it at different angles will periodically con
verge at some points on the axis. These points are called focuses of the 
channel. So if the dependence of the speed of sound in the channel on 
depth is close to parabolic: c(z) = cm (1 + | 6 2 Az2), where Az = z — zm. 
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F i g . 3 . 6 : A c o u s t i c 

waveguide of t h e 

second t y p e . When 

Cf < Co t h e sound 

r e f r a c t e d a t t h e 

bo t tom does n o t r e a c h 

t h e s u r f a c e . 

Then for rays leaving the source a t small angles with the horizontal, t he 

focuses will lie a t t he points xn — XQ + TT n / b, where n = 1, 2 , . . . and b 

is a coefficient whose dimension is inverse t o depth ( m - 1 ) , Fig. 3.7. The 

parabolic function c(z) is close to the actual dependence of the speed of 

sound on depth in deep oceanic acoustic waveguides. Deviations of c(z) 

from parabolic law blurs the focuses on the axis of the waveguideb. 

0(2) 

bottom 

Fig. 3.7: Waveguide 

focuses sound beams 

from the source (XQ) 

like an acoustic lens. 

Beams cross at points 

xn called focuses. 

bLike many periodic processes in nature propagation of beams along a parabolic waveg
uide obeys the harmonic law. Near the axis trajectories follow the equation: 

d2Az 
dx2 -b2 Az, 

where x is not the time but the horizontal coordinate. Obviously the trajectories are 
sinusoidal, Az — A sin6(x — io), cross at the zeros of the sine, xn — xo = TTTI/6. 
—A. A. 
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3.4 Applications? 

Is it possible to send a sound signal along an oceanic acoustic waveguide 
and receive it at the point of origin, after it has completely circled the 
globe? The answer is a flat no. First and foremost, the continents present 
insurmountable obstacles, as well as great contrasts in depths of the World 
oceans. So it's impossible to choose a direction along which there would be 
a continuous round-the-world waveguide. But that isn't the only reason. A 
sound wave propagating along an oceanic acoustic waveguide differs from 
sound waves in the "telephone" tubes on ships that we mentioned at the 
outset. The sound wave traveling from the bridge to the engine room is 
one-dimensional, and the area of its wave front is constant at any distance 
from the source. Therefore, the strength of the sound will also be constant 
everywhere along the tube (heat losses aren't taken into account). As for 
the oceanic acoustic waveguide, the sound wave doesn't propagate along a 
straight line but in all directions in the plane z = zm. So the wave here is 
a cylindrical surface. Because of this, the strength of the sound decreases 
with distance — that is, the sound intensity is proportional to 1 / R, where 
R is the distance from the source of the sound to the detector. (Try to 
obtain this dependence and compare it with the law of attenuation of a 
spherical sound wave in three-dimensional space.) 

Another reason of sound attenuation is the damping of sound wave as 
it travels through waters of the ocean. Energy from the wave is trans
formed into heat due to viscosity of water and other irreversible processes. 
Moreover, sound waves dissipate in the ocean because of various hetero
geneities, such as suspended particles, air bubbles, plankton, and even the 
swim-bladders of fish. 

Finally we should point out that the underwater sound channel isn't 
the only example of waveguides in nature. Long-distance broadcasting 
from radio stations is possible only because of the propagation of radio 
waves through the atmosphere along giant waveguides. And we're sure 
you've heard of mirages, even if you've never seen one. Under certain at
mospheric conditions, waveguide channels for electromagnetic waves in the 
visible range can form. This explains the a appearance of a ship in the 
middle of desert, or a city that springs to life in the middle of the ocean. 
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Prove that trajectories of sound beams in parabolic 
waveguide obey the harmonic equation. 



Chapter 4 

In the blue 

Now the wild white horses play, 
Champ and chafe and toss in the spray. 

Matthew Arnold, The forsaken merman. 

Artists are endowed with sharp professional vision. This makes world 
in realistic landscapes outstandingly bright and colorful and features some 
natural events. Even best painters do not need to understand the reasons of 
the portrayed processes which often may be hidden deeply. However with 
the help of landscapes of a good painter one can study the ambient nature 
even better than in physical world. Suspending the moment in the picture 
the author intuitively focuses on the principals and omits inessential and 
passing details. 

Look at the picture "In the blue" by the russian painter Arkadii Rylova 

that is reproduced on the second page of the cover. "White birds soar 
among white clouds bathing in the blue sky. And the ship under the 
sails drifts peacefully over the gently rolling blue waves like a white bird 
in the ocean." This description belongs to the notable Russian art critic 
A. A. Fedorov-Davydov. Watching the wonderful canvas in Moscow Tretyakov 
Gallery one forgets of being in museum and feels a guest at this feast of 
nature. 

But let us leave the aesthetic side and examine the picture with the eyes 
of researchers. First of all, where from did the author paint the landscape, 
was he on a rocky ledge on the coast or aboard a ship? 

Most probably he was on a ship since there is no surf in the foreground, 

aA. A. Rylov, (1870-1939), Russian Soviet painter of epic romantic manner. 

25 
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the distribution of waves is symmetrical and not deformed by the neigh
boring shore. 

Let us try to estimate the velocity of the wind filling the sails of the 
ship floating at a distance. We are not the first interested by the question 
of evaluation of the speed of wind on the basis of the height of waves and 
other natural evidence. It was already in 1806 that Sir Francis Beaufortb 

introduced his approximate twelve-step scale. He related the force of the 
wind to the effects it had onto land objects and to the sea choppiness, see 
Table 4.1 on pp. 34-35. This scale has been approved by the International 
Meteorological Committee and is used up till now. 

Turning back to the picture we see that the sea is rather quiet but to 
rare white horses. According to the Beaufort scale this corresponds to a 
gentle breeze with the velocity about 10 mph. 

One may judge velocity of wind not only by means of the Beaufort scale but 
from the brightness contrast between the sea and the sky. Usually horizon in 
the open sea looks like a clear-cut border. The brightness of the sea becomes 
equal to that of the sky only at dead calm. In this case the contrast disappears 
and the sea becomes indiscernible from the sky. This happens rarely because the 
calm must be almost absolute, Beaufort number being zero. Even slightest wind 
disturbs the sea surface. The coefficient of reflection from the oblique elements 
of the surface is no longer equal to unity and the contrast appears between the 
sea and sky. It may be studied experimentally. The dependence of the sea-sky 
contrast on the wind force was measured during an expedition of the russian 
research ship "Dmitri Mendeleyev". The results of measurements are depicted in 
Fig. 4.1 by crosses, while the solid line represents the theoretical relation found 
by A. V. Byalko and V. N. Pelevin. 

By the way, why are white watercaps so much unlike the blue-green sea 
water? 

The color of the sea is defined by many factors. Among the most im
portant are the position of the sun, the color of the sky, the form of the 
sea surface and the depth. In shallow waters presence of sea-weeds and 
pollution by solid particles are relevant. All these factors affect reflection 
of light from the surface, it's submarine scattering and absorption. This 
makes unambiguous prediction of the sea color impossible. Nevertheless 

bF. Beaufort, (1774-1857), English admiral, hydrographer and cartographer, head of 
english hydrographic service. 
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Fig. 4.1: Dependence 
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some details can be understood. For example, we can explain why the fore
ground waves that were closer to the painter were much darker in hue than 
most of and why the sea became lighter near horizon. 

The extent of reflection of a light wave from the interface of two media 
with different optical densities is determined by the angle of incidence and 
the relative refraction index of the media. It is quantitatively characterized 
by the coefficient of reflection that is equal to the ratio of intensities of the 
incident and reflected raysc. Coefficient of reflection depends on incidence. 
In order to check this you may watch reflection of light from a polished table. 
The transparent varnish will act as the more dense optical medium. You 
will see that tangent rays are almost completely reflected, but as the angle 
of incidence becomes smaller the more light penetrates the optically dense 
medium and less is reflected from the boundary. Coefficient of reflection 
falls down with the decrease of the incidence angle. 

Let us consider the schematic image of a wave in Figure 1 (see the 
second page of the cover). It is obvious that the incidence angles a± and 
c*2 of the rays coming to observer from the front and back sides of a wave 
are different, 0:2 > a.\ • Hence more light comes to the eyes of observer from 
the distant areas and front faces of waves look darker than the plane sea 
far away. Certainly in the troubled sea the angle a varies. However far 
enough the angular size of the darker crests decreases rapidly even though 
the angle a? remains bigger than ai. Near horizon the observer sees not 
solitary waves but the averaged pattern, the troughs between waves are 

intensity of light is the averaged over time value of the light flux through a unit area 
perpendicular to the direction of the light propagation. 



28 In the blue 

hidden and gradually the darker sides of waves disappear. Because of that 
in the picture the sea near horizon looks lighter than in the foreground. 

Now we can explain why water caps are white. The seething water in 
the cap swarms with endlessly moving, deforming and bursting bubbles. 
Reflection angles vary from point to point and with time. As a result sun 
rays are almost fully reflected by the froth and watercaps appear whited. 

The color of the sea is greatly affected by the color of the sky. We 
have already said that the first is practically unpredictable. However the 
second can be understood from physical principles. Obviously the color 
of the sky is determined by scattering of solar rays in the atmosphere of 
the Earth. The spectrum of the sunlight is continuous and contains all 
wavelengths. Why does the scattering make the sky blue whereas the Sun 
seems yellow? We shall explain that with the help of the Rayleigh law of 
the light scattering. 

In 1898 the English physicist Lord Rayleighe developed the theory of 
scattering of light by particles much smaller than the wavelength of the 
light. He found the law that states that the intensity of the scattered light 
varies inversely with the fourth power of the wavelength. In order to explain 
the color of the sky Rayleigh applied his law to the scattering of sunlight in 
the atmosphere. (For this reason the statement above is sometimes called 
the "law of the blue sky".) 

Let us try to understand the meaning of the Rayleigh law qualitatively. 
Remember that light consists of electromagnetic waves. Molecules are built 
of charged particles, t. e. of electrons and nuclei. In the field of an elec
tromagnetic wave these particles start moving and the motion may be con
sidered as harmonical: x(t) = AQ sin ut, where AQ is the amplitude of os
cillations and w is the wave frequency. The acceleration of the particles is 
a — —u2 AQ sin ut. Accelerated charged particles become sources of elec
tromagnetic radiation themselves and emit the so-called secondary waves. 
The amplitude of secondary wave is proportional to the acceleration of the 
emitting particle. (As you know uniformly moving charged particles make 
electric current but do not generate electromagnetic waves.) Therefore the 
intensity of the secondary emission is proportional to the square of the ac-

dIn the froth of watercaps blue rays coming from the sky are mixed with yellowish 
sunlight giving the white color. 

eJ. W.S. Rayleigh, (1842-1919), English physicist, chairman of the London Royal Society, 
Nobel Prize 1904. 
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celeration of electrons in the field of the primary wave (one may neglect the 
motion of heavy nuclei) and therefore to the fourth power of the frequency, 
(/ oc a2 oc {x'if oc w4). 

Now return to the sky. The ratio of the wavelength of blue to that of red 
is 650 nm/450 nm = 1.44 (1 nm (nanometer) = 1 0 - 9 m). The fourth power 
of this number is 4.3. Thus according to the Rayleigh law the intensity of the 
blue light scattered by the atmosphere exceeds that of the red four times. As 
a result the ten miles thick air layer acquires the blue tint. On the contrary 
the blue component of the sunlight that reaches us through the atmospheric 
"filter" is seriously depleted. Hence the sunrays penetrating the atmosphere 
get the yellowish tone. The coloration may enhance getting red and orange 
during sunset when the rays have to pass longer path through the air. 
(Obviously the colors change in the reverse order when the sun rises.) 

It is interesting that despite the Rayleigh law claims the wavelength of 
the scattered light to be much bigger than scattering particles the intensity 
of scattering does not depend on the particle size. At first Rayleigh believed 
that the color of the sky is due to the tiniest dust polluting the atmosphere. 
But then he decided that sunrays are scattered by molecules of gases that 
make up the air. Ten years later in 1908 the Polish theoretical physicist 
M. Smoluchowskif proposed the idea that scattering is effected by rather 
unexpected objects, namely by inhomogeneities of the density of particles. 
With the help of this hypothesis Smoluchowsky managed to explain the long 
known phenomenon of critical opalescence — that is the strong scattering 
of light in liquids and gases that occurs near critical point. Finally in 1910 
Albert Einstein8 formulated the consistent quantitative theory of molecular 
scattering of light that leaned upon the ideas of Smoluchowski. In case of 
gases the intensity of scattered light exactly coincides with the earlier result 
by Rayleigh. 

It seems that everything is in order now. But what is the origin of 
inhomogeneities in the air? Supposedly air must be in thermodynamical 
equilibrium. Gigantic inhomogeneities that make wind blow are incompa
rable with wavelengths of light and can not affect the scattering. 

In order to clear out the origin of the inhomogeneities we must discuss 
the concept of thermodynamical equilibrium in more detail. For simplicity 

fM. von Smolan-Smoluchowski, (1872-1917), Polish physicist, classical works on fluctu
ation theory, and theory of Brownian motion 

sSee footnote on page 5 
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let us consider some macroscopic amount of gas confined in a closed volume. 
Physical systems consist of enormous numbers of particles. This makes 

statistical description the only possible approach. Statistical treatment 
means that instead of following separate molecules we calculate average 
values of physical characteristics of the whole system. It is not necessary at 
all that the corresponding value was the same for all molecules. The most 
probable distribution of molecules in the macroscopic gas volume would 
be the uniform one. But because of thermal motion there is a nonzero 
probability that concentration of molecules in some part of our container 
will enhance (and as a result it will fall down somewhere else). Theoretically 
it is even possible that all molecules will assemble in one half of the container 
leaving another half absolutely empty. However the probability of such 
event is expressed by the extremely small number. So there is little hope 
to realize it once in 1010 years that is currently believed to be the lifetime 
of the Universe. 

But small deviations of physical quantities from their averages are not 
only allowed but happen perpetually due to the thermal motion of molecules. 
These deviations are called fluctuations; (in latin fluctus means wave). Be
cause of fluctuations the gas density may be greater here and less there and 
as a result the refraction index will vary from place to place. 

If now we turn back to the scattering of light. All the reasoning applied 
to the closed container will hold in the atmosphere. Light is scattered by 
inhomogeneities of the refraction index that come from density fluctuations. 
Moreover, air is the mixture of several gases. Distinctions in thermal motion 
of different molecules provide one more source of inhomogeneities. 

The typical scale of inhomogeneities of the refraction index (and of those 
of density) depends on temperature. The sunlight is mainly scattered in the 
atmospheric layers where inhomogeneities are much less than wavelengths 
of visible light but much greater than the molecules of gases that compose 
the air. This means that scattering is effectuated by inhomogeneities but 
not by molecules as it was presumed by Rayleigh. 

Nevertheless the sky is blue and not violet contrary the prediction of 
the Rayleigh law. There are two reasons for this discrepancy. First, the 
spectrum of the Sun contains much less violet rays than blue ones. The 
second thing responsible for the seeming disagreement of the theory with 
practice is our "registrating device", the ordinary human eye. It turns out 
that visual perception markedly depends on the wavelength of light. The 
experimental curve characterizing this dependence is plotted in Fig. 2 of 
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the second page of the cover. It is clear that our eye responds to violet 
rays much weaker than to blue and green ones. This conceals the violet 
component of the scattered sunrays from people. 

Well, but why are the clouds that we see in the sky unmistakably white? 
Maybe they are composed of particles that violate the Rayleigh law and 
our conclusions are no longer true? 

Clouds consist either of water drops or of ice crystals that in spite of be
ing microscopic are much larger than the visible wavelengths. The Rayleigh 
law is not valid for these particles and the intensity of the scattered light is 
nearly the same for all wavelengths. This makes clouds like those painted 
in the picture. 

Now turn your attention to the form of the clouds. The tops of the 
clouds in the picture are drawn fluffy and wreathing (these are the so-
called heap clouds) but the lower surfaces are plainly outlined. For what 
reason? It is known that heap clouds (in distinction to sheet ones) are 
formed by uprising convective flows of humid air. The temperature of air 
decreases with height above the sea (as well as above the land). As long 
as the altitude is much less than the Earth radius and the distance to the 
nearest shore surfaces of constant temperature (the isotherms) are next 
to horizontal plains parallel to the sea surface. The temperature drop is 
sufficiently fast near the sea level, being about 1°C per hundred meters (this 
makes about = 1.6°F per 100 yd). (Generally speaking the dependence of 
the air temperature on the altitude is far from linear but for elevations less 
than several miles these numbers are correct). 

Now, what happens to the upward flow of humid air? As soon as it 
reaches the altitude where the temperature of air corresponds to the dew 
point of the vapor it carries water begins condensing to tiniest drops. The 
isotherm where this happens contours the bottom of the cloud. Irregulari
ties of the surface where condensation takes place stay within some tens of 
meters whereas clouds stretch to hundreds and thousands meters. Hence 
their lower bounds are almost flat. This is confirmed by the row of clouds 
far away hovering horizontally above the see. 

However the rising does not stop with creating the bottom of a cloud. 
The air continues the upward motion and cools rapidly. The remaining 
vapor suffers intensive condensation first into droplets and then into little 
ice crystals. These crystals usually form the top of heap clouds. After 
having lost the vapors and cooling the air slows down and turns back. It 
flows sidewards and around the cloud. Convective flows lead to formation 
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of the characteristic curls at the tops of heap clouds and the descending 
cold air keeps clouds apart. Thanks to that they do not merge into heavy 
grey mass being interspaced by blue intervals. 

You see in the foreground the flight of white birds. Let us estimate 
the frequency of wing flaps of a medium-sized bird (say with the mass 
m w 10kg and the area of wings 5 « l m 2 ) when it flies without gliding. 
Let the average velocity of the wings be t;. Then in the time At the bird 
wings will render velocity v to the mass Am = pSv At of the air (here p is 
the air density). The total momentum passed by the wings to the air will 
be Ap = pSv2 At. In order to keep the height this must compensate the 
weight of the bird. This means that Ap = mg At. We may conclude that 

mg — pSv2, 

and the mean velocity of the moving wings is v — y/m g/p S. This velocity 
can be related to the frequency v of flaps and the length of the wings L in 
the usual way: 

v = w L = 2n v L. 

Assuming that L ~ \/S we find: 

Thus according to our calculation the bird should flap the wings once 
per second that looks quite a reasonable estimate by the order of magnitude. 

It is interesting to discuss the obtained formula in more detail. Let us 
suppose that all birds have roughly the same form of the body regardless 
to the size and species. Then one may link the area of the wings to the 
mass of the bird by the relation S oc m2 /3 . Substituting this into the earlier 
found expression for the frequency of the wing flaps we obtain that 

1 

From this we conclude that the frequency of flaps grows with the decrease in 
the mass of birds. This absolutely agrees with the common sense. Certainly 
the assumption that all birds have wings of the same form is extremely 
rough since wings of most of big birds are relatively bigger than those of 
small ones. Nevertheless this only supports the trend. 
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Let us note that the same formula (4.1) could be derived using the 
dimensional approach (except the important factor 27r). It is clear that 
the frequency of wing flaps depends on the bird's weight, the area of the 
wings S, and the density p of the ambient air. Let us search for a relation 
between the four of them. Suppose that v — paS& (mg)'r with a, /?, 7 
being unknown numbers. Comparison of the dimensions of the quantities 
in the both sides of the relation gives a = — 7 = - 1 / 2 and 0 = — 1. From 
here follows that 

sy P 

mg 
v ~ 

p 

Questions and answers that could be found "in the blue" are far from 
being exhausted. Curious and observant reader will find in the picture other 
maybe even more instructive aspects. However why should we limit our
selves by the frame of the picture? There is plenty of interesting questions 
and problems in the everyday world all around us. 

By the way could you now explain why astronauts 
tell that from the outer space the Earth looks blue? 
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Table 4.1: BEAUFORT WIND SCALE. 

Beaufort 

Force 

Number 

0 
1 

2 

3 

4 

5 

6 

7 

8 

State 

of 

Air 

calm 

light airs 

slight 

breeze 

gentle 

breeze 

moderate 

breeze 

fresh breeze 

strong 

breeze 

moderate 

gale 

fresh gale 

Wind 

velocity 

(knots) 

0-1 

1-3 

4-6 

7-10 

11-16 

17-21 

22-27 

28-33 

34-40 

(mph) 

< 1 . 1 5 

1.2-3.5 

4.6-6.9 

8.0-12 

13-18 

20-24 

25-31 

32-38 

39-46 

Description of sea 

surface 

sea like a mirror 

ripples with appearance of 

scales are formed, without 

foam crests 

small wavelets still short 

but more pronounced; crests 

have a glassy appearance 

but do not break 

large wavelets; crests begin 

to break; foam of glassy ap

pearance; perhaps scattered 

white horses 

small waves becoming 

longer; fairly frequent white 

horses 
moderate waves taking 

a more pronounced long 

form; many white horses 

are formed; chance of some 

spray 

large waves begin to form; 

the white foam crests are 

more extensive everywhere; 

probably some spray 

sea heaps up and white foam 

from breaking waves begins 

to be blown in streaks along 

the direction of the wind; 

spindrift begins to be seen 

moderately high waves of 

greater length; edges of 

crests break into spindrift; 

foam is blown in well-

marked streaks along the di

rection of the wind 
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Table 4.1: BEAUFORT WIND SCALE (continued). 

Beaufort 

Force 

Number 

9 

10 

11 

> 1 2 

State 

of 

Air 

strong gale 

whole gale 

storm 

hurricane 

Wind 

velocity 

(knots) 

41-47 

48-55 

56-65 

> 6 5 

(mph) 

47-54 

55-63 

64-75 

> 7 5 

Description of sea 

surface 

high waves; dense streaks of 

foam along the direction of 

the wind; sea begins to roll; 

spray affects visibility 

very high waves with long 

overhanging crests; result

ing foam in great patches is 

blown in dense white streaks 

along the direction of the 

wind; on the whole the sur

face of the sea takes on a 

white appearance; rolling of 

the sea becomes heavy; visi

bility affected 

exceptionally high waves; 

small- and medium- sized 

ships might be for a long 

time lost to view behind the 

waves; sea is covered with 

long white patches of foam; 

everywhere the edges of the 

wave crests are blown into 

foam; visibility affected 

the air is filled with foam 

and spray; sea is completely 

white with driving spray; 

visibility very seriously af

fected 





Chapter 5 

The moon-glades 

Reflections of various light sources from the surface of water often look like 
long shimmering lanes leading from the source to our eye. Just remember 
the setting sun reflected by sea or street lights along a night river quay. 
Glittering of the moon adorns the sea or lake with a wide stripe of light. 

All this happens because every wavelet on the surface gives a separate 
image of the source. Let us try to understand why reflections from thou
sands of illuminated ripples make a glade, that is an oblong figure directed 
from the light source to the observer. 

As you already know wavelets are formed at Beaufort numbers between 
1 and 3. At weaker winds water is calm and the surface reflects like a plain 
mirror. Stronger winds bring on foam and white horses and the contour of 
the glade becomes vague. One may visualize ripples as scores of wavelets 
running chaotically in all directions*. Slopes of their surfaces do not exceed 
some limiting value a which depends on the wind and can reach 20°-30°. 

Now let us a bit simplify the problem and try to find proportions of 
the glade. Suppose that everywhere on the surface there is plenty of tiny 
mirror-like ripples looking in all directions. The slopes of wavelets range 
from 0 to a (this follows from the smoothness of the surface). For simplicity 
we shall assume that both the light source and the observer are at the same 
height h above the water, Fig. 5.1. 

A small horizontal mirror will cast the beam to the eye of the observer 
only if its distances to the source and to the observer are equal. This means 
it must be at the point M. On the other hand a mirror tilted at the angle 

"Remember the Raileigh independence principle —A. A. 
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^M>-

Fig . 5 . 1 : The length of glade i s determined by the 
s t eepes t s lopes turned t o and away from the 
observer . The width of glade i s defined by 
r e f l e c t i o n s from s lopes t i l t e d sidewards. 

a towards the observer must be moved away from him to the point N. 
Conversely a mirror tilted away from the observer should be transferred to 
the closer point N'. 

The tilted mirrors imitate the extreme positions from where waves still 
reflect light to our eyes. Therefore the distance from JV to N' determines 
the length of the Ught-glade. Everywhere in between one can find waves 
with the right slope which reflect rays to the observer. 

Now let us consider angles between the light rays. One can notice from 
the Fig. 5.1 that fi+a = j+S, (i-a = e = 8 and 7 = a+0- (0-a) = 2a. 
Hence we may conclude that the angular size of the longer axis of the light 
spot simply equals the angle between the steepest slopes of the ripples. It 
makes no problem to calculate the length N N' of the glade. 

The shorter axis of the reflecting light spot is easily calculated in the 
similar manner. Let us shift the mirror away from the central point M in 
the direction transverse to N N'. In order to reflect beams to the eye the 
mirror must be turned around the axis parallel to JV JV', Fig. 5.1. Having in 
mind that the maximal tilt of the mirror remains a we find that the width 
of the light strip is P P' = 2ft tan a and hence the shorter axis is seen at 
the angle $ = 2 arctan ^ f t ° 2h tana 

y/P+h2 

The ratio of the apparent sizes of the two axes is /3 / 2a. In case that the 
spot is not too large and the angle a is small then /? / 2a : Vi2+»»2 = s i n w 
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where w is the incidence angle at the point M.b As the angle m becomes 
smaller the spot grows longer. If the look glances along the surface the spot 
appears infinitely long and narrow. 

When we watch moon-glades on sea the angle LJ is most often small and 
the glade stretches to the horizon, Fig. 5 J . Of course here our formulae « 
not literally applicable. Nevertheless they help to explain qualitatively the 
origin of glades and understand the effects erf wind speed and of the moon 
altitude above horizon on glade width: increasing a and h m a t e the glade 
wider. 

F i g . 5 . 2 : The wind s p e e d s a r e (from l e f t t o 

r i g h t ) : 12m/8; 12m/8; 5m/s; 2m/8. The 
a l t i t u d e s of t h e sun above h o r i z o n a r e : 30° ; 20° ; 

IT; 7 ° . 

What is the value of the angle UJ if the angular al

titude of the moon is 0? 

bTo be specific M Is the - point where the reflection from the calm waters would be. 
—A. A. 





Chapter 6 

The Fucault pendulum and the Baer 
law 

. . . There was something, however, in the appearance of 
this machine which caused me to regard it more atten
tively. 

Edgar Allan Poe, The Pit and the Pendulum. 

Those lucky ones who have been to St. Petersburg must remember the 
famous pendulum in the St.Isaac's cathedral3. Others might have heard 
about it, fig. 6.1. The swings of the pendulum are accompanied by the slow 
rotation of the plane of oscillations. This observation was first done in 1851 
by the French scientist J. Fucaultb. The experiment was carried out in the 
spacious hall of the Pantheon in Paris, the ball of the pendulum had the 
mass of 28 kg, (68 lb) and the string was 67 meters (73 yd) long. Since then 
this sort of pendula are called after Fucault. How could one explain it's 
motion? 

You know from the textbooks that if the Newton'sc laws were true on 
the Earth then the pendulum would keep the plane of oscillations. This 
means that in the reference frame rigidly bound with the Earth the laws 
of Newton must be "corrected". In order to do this one has to introduce 

a St . Petersburg, the city and seaport on the Gulf of Finland of the Baltic Sea was during 
1712-1917 the capital of Russian Empire. In 1917, after revolution, it was renamed to 
Leningrad but now bears the original name. 

b J . B. L. Fucault, (1819-1868), French physicist, foreign member of Russian Academy 
of Sciences. 

cSir Isaac Newton, (1642-1727), English philosopher and mathematician; formulator of 
the laws of classical mechanics and gravity. 
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Fig. 6.1: In March. 1931 Fucault pendulum was first 

presented in the Isaac's cathedral occupied at 

that time by Leningrad Antireligious Museum. 

special forces called inertia forces. 

6.1 Inertia forces in the rotating reference frame 

Inertia forces must be introduced in any reference frame that moves with 
acceleration with respect to the Sun (or, to be precise, to the so-called sta
tionary stars). These are called non-inertial reference frames in distinction 
to inertial ones that move uniformly with respect to the Sun and stationary 
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stars. 
Strictly speaking the Earth does not present an inertial frame of refer

ence because it orbits the Sun and revolves itself. Usually one may neglect 
accelerations arising from these motions and apply the laws of Newton. 
However Fucault pendulum is not the case. Precession of the oscillation 
plane is explained by the action of the special force of inertia called the 
Coriolis forced. Let us dwell on it. 

Here is the simple example of rotating reference frame where inertia 
forces reveal themselves clearly. 

Imagine a man riding a merry-go-round in the Gorky Parke. Let the 
radius of the circle be r and the angular velocity of rotation w. Suppose 
that the man tries to jump from his seat to the one in front of him, Fig. 6.2, 
moving with velocity VQ with respect to the platform. 

Fig. 6.2: Inertia 
forces in revolving 
reference frame. 

vFa 

C 1 ) ' 'S\ 

( \ 1 /r/l 

i% 

1 y5*C 
S^vV 

A Warning! The experiment is purely imaginary being 
strictly forbidden by safety regulations. 

First let us consider the motion of our hero in a stationary reference 
frame. Obviously the motion is circular with the linear velocity v that adds 
up of the linear velocity u r of the merry-go round and his relative velocity: 

v — uir + vo. 

dG. G. Coriolis, (1792-1843), French civil engineer. 
eSee the novel by M. Cruz-Smith for further reference. 



44 The Fucault pendulum and the Baer law 

The centripetal acceleration is denned by the common formula, 

v v 
aCT> = — = — + w 2 r + 2v0u>. 

r r 

According to the second Newton law the acceleration is due to the horizontal 
component of the force exerted onto the man by the rotating platform, the 
seat, handles etc., 

macp = Q. 

Now consider the motion in the reference frame bound to the merry-go-
round. Here the linear velocity is vo and the centripetal acceleration is 

2 
acp = ~f~- With the help of the two previous equalities we may write: 

mvo ^ 2 
maco = = Q — mcj r — 2mi>ow. 

r 
In order to apply the second Newton law in the revolving frame of reference 
we must introduce the force of inertia: 

F\n = - (m ui2 r + 2m v0 w) = - (Fct + Fcor), 

where the minus sign indicates that it is directed away from the axis. In 
the non-inertial frame the equation of motion will be: 

m o^p = Q + F i n = Q - (Fct + FC o r) . 

It seems that the inertia force throws you of the center of the merry-go-
round. However the word "seems" is not a slip. No new interactions be
tween the bodies appear in the rotating reference frame. The only real 
forces acting onto the man are the same reactions of the seat and bars. 
Their net horizontal component Q is directed towards the center. In the 
stationary reference frame the force Q resulted into the centripetal acceler
ation acp. In the rotating frame due to kinematical reasons the acceleration 
changed to the smaller value a'cp. In order to restore the balance between 
the two sides of the equation we had to introduce the force of inertia. 

In our case the force Fin comes up of the two addends. The first is the 
centrifugal force Fcf that increases with the frequency of rotation and with 
the distance from the center. The second is the Coriolis force FQ0T named 
after the person who first calculated it. This force has to be introduced 
only when the body moves relative to the rotating frame. It depends not 
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on the position of the body but on it's velocity and the angular velocity of 
rotation. 

If the body in the rotating frame moves not along a circle but radially, 
Fig. 6.2, then, just the same, one must introduce the Coriolis force. Now 
it is perpendicular to the radius unlike the previous case. One of the basic 
features of the Coriolis force is that it is always perpendicular both to the 
axis of rotation and to the direction of motion. It may look strange but 
in the revolving frame inertia forces not only push a body away from the 
center but tend to swerve it astray. 

We must emphasize that the Coriolis force like all other inertia forces is 
of kinematical origin and can not be related to any physical objects*. Here 
is an explicit example. 

Imagine a cannon set at the North pole and pointed along a meridian 
(the pole is chosen for simplicity). Let the target lie on the same meridian. 
Is it possible that the projectile hits the target? From the point of view of 
external observer which uses the inertial frame bound to the Sun the answer 
is obvious: the trajectory of the projectile lies in the initial meridional plane 
whereas the aim revolves with the Earth. Thus the projectile will never get 
the target (unless a whole number of days will elapse). But how could one 
explain the fact in the reference frame bound to the Earth? What causes 
the projectile stray from the initial vertical plane? In order to restore 
consistency one has to introduce the Coriolis force that is perpendicular 
to the rotation axis and to the velocity of a body. This force pulls the 
projectile away from the meridional plane and it misses the target. 

Now let us return to the precession of the oscillation plane of the Fu-
cault pendulum from which we have started. It comes of a quite similar 
reason. Suppose again that the pendulum is situated at the pole. Then for 
a stationary observer the oscillation plane is at rest and it is the Earth that 
rotates. A denizen of the North pole will see the opposite. For him the 
meridional plane looks fixed whereas the oscillation plane of the pendulum 
performs a full revolution every 24 hours. The only way to explain this is 
with the help of the Coriolis force. Unfortunately in general the picture is 
not so transparent as at the poleg. 

fEven though the force of inertia is not produced by any real bodies, observers feel it as 
a real force, akin to gravity. Remember the centrifugal force in the turning car. 

gOscillation plane of a Fucault pendulum located elsewhere turns 2n sin a radians per 
day, where a is the latitude of the place. 
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6.2 In teres t ing consequences 

The Coriolis force which appears due to the Earth rotation leads to a num
ber of important effects. But before discussing those let us establish the 
direction of the Coriolis force. We have told that it is always perpendicular 
to the rotation axis and to the velocity of motion. However this leaves two 
possibilities depicted in Fig. 6.3. Let us remind that analogous situation 
emerges when defining the direction of the Lorentzh force exerted onto a 
moving charged by magnetic field. You may remember from textbooks that 
it is perpendicular to the velocity of the charge and to the magnetic induc
tion. Still in order to define it unambiguously one has to resort to the left 
hand rule. 

C?«u 
"o 

C3(i i 

Fig . 6 . 3 : Two opt ions for the d i r e c t i o n of 
Cor io l i s fo rce . By convention the d i r e c t i o n i s 
f ixed by the l e f t hand r u l e . 

Direction of the Coriolis force can be determined by means of the similar 
rule elucidated in Fig. 6.3, a. First of all we must assign a direction to 
the axis. By convention looking in this direction one sees the clockwise 
rotation1. Now let us pose the left hand with the four fingers pointing in 
the direction of the velocity so that the axis pierced through the palm. 
Then thumb the set aside at the right angle will show the direction of the 
Coriolis force. 

The alternatives in defining the directions of Coriolis and Lorentz forces 
correspond to the two kinds of symmetry encountered in nature, the left 

h H . L. Lorentz, (1853-1928), the Dutch physicist; Nobel Prize 1902. 

'The gimlet rule states that this is where a gimlet rigidly attached to the frame would 
move. 
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and right symmetries. In order to classify the symmetry one has every time 
to use "standards" such as hand, gimlet, cork-screw etc. Certainly nature 
does not care about your hand or gimlet. Simply these are tools that help 
in fixing the direction of the force. 

This completeness the discussion of the Coriolis force for the case when 
the velocity of a body in the revolving frame is perpendicular to the axis. 
The magnitude of the force is 2mwvo and the direction is defined by the 
left hand rule. But what happens in general case? 

It turns out that if the velocity Vo makes an arbitrary angle with the 
rotation axis, Fig. 6.3, 6, then only the projection of v0 onto the plane 
perpendicular to the axis is important. The value of the Coriolis force is 
given by the following formula: 

Fcor = 2muv± = 2mo;vocos0. 

Direction of the force is determined by the same left hand rule although 
now the fingers must be parallel not to the velocity but to it's projection 
onto the plane perpendicular to the axis, Fig. 6.3, b. 

Now we have learned everything about Coriolis force: both how to cal
culate the value and to define the direction. Armed with this knowledge 
we may explicate a number of interesting effects. 

Say, it is well known that trade winds which blow from tropics to the 
equator are always deflected westward. This effect is explained in Fig. 6.4. 
First let us consider the Northern hemisphere where trade winds blow from 
north to south. Position the left hand above a globe, the palm down. The 
axis enters the palm being perpendicular to the fingers. You will that the 
Coriolis force is perpendicular to the page being levelled at you, that is 
to the west. Trade winds of the Southern hemisphere in their own turn 
blow from the tropic of Capricorn north to equator. However neither the 
direction of rotation nor the projection of wind velocity onto the equatorial 
plane change. Therefore the direction of the Coriolis force does not change 
either and in both cases the winds are diverted to the west. 

Figure 6.5 illustrates the BaerJ law. The right banks of rivers in the 
Northern hemisphere are more steep and undermined than the left ones 
(and vice versa in the Southern hemisphere). The reason is again the 
Coriolis force that pushes flowing water to the right. Because of friction 

JK. E. von Baer, (1792-1876), Estonian zoologist and pioneer embryologist was among 
the founders of the Russian Geographical Society. 
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Fig . 6 .4 : Cor io l i s force 
the west . 
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d e f l e c t s t r ade winds t o 

the surface velocity of a stream is bigger than that at the bottom; hence 
bigger is the Coriolis force. This gives rise to the circulation of water shown 
in Fig. 6.6 by arrows. The soil of the right bank is washed away and settles 
at the left side. This strongly resembles wearing of the bank at river turns 
which was described in the chapter dedicated to meanders. 

F ig . 6 . 5 : Cor io l i s 
force d r ives water 
flows t o the r i g h t in 
t he Northern 
hemisphere and t o t he 
l e f t in the Southern. 

Coriolis force leads to eastward deviation of falling bodies. (Tackle 
this yourself.) In 1833 the german physicist Ferdinand Reich carried out 
precision experiments in the Freiburg mine. He obtained that the average 
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F i g . 6 . 6 : The r i g h t 

banks of r i v e r s i n t h e 
Northern hemisphere 

are more s t e e p and 
undermined than t h e 
l e f t o n e s . 
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Northern hemisphere 

(over 106 measurements) deflection of bodies which were dropped from the 
height of 158 m (178 yd) was 28.3 mm (1.11 in). This was one of the first 
experimental proofs of the Coriolis theory. 

Try to estimate the difference of water levels at the 
right and left sides of the Volga river. 
Does the Baer law apply to rivers streaming along 
parallels or equator? What changes if a river crosses 
equator like Congo? 





Chapter 7 

The moon-brake 

Time and tide stop for no man. 

A proverb. 

It was already long ago that people identified the Moon as the reason 
of tides. The Moon attracts the water of the world ocean and that forms 
in the ocean a water "hump". The hump keeps its place on the moon side 
as the Earth rotates about the axis. When the high water advances to a 
coast the tide rises and when it retreats the ebb starts. The theory looks 
rather natural but it leads to a contradiction. This would mean that tides 
must be a daily event but instead of that they happen every twelve hours. 

The first explanation was given by the Newton's theory of tides which 
appeared short after the discovery of the law of gravity. We shall study this 
question using the idea of inertia forces. According to the previous chapter 
one may apply the Newton laws of mechanics in revolving reference frame 
after adding to interactions between physical bodies forces of inertia. 

The Earth rotates around its axis, around the Sun and around... the 
Moon. Usually on forgets the latter one but it is this rotation that makes 
possible to construct the theory of tides. Imagine that two balls, one light 
and one heavy, finked by a string are placed on a smooth surface, Fig. 7.1. 

Rotations of the tied balls are interrelated. Each one follows a circle of 
its own radius but the common center of the two is at the center of mass 
of the system. Of course the bigger ball traces the smaller circle but it 
moves! Just the same the Moon and the Earth being attracted to each 
other according to the law of gravity are orbiting their common spatial 
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i 
I \ Fig. 7.1: Two linked 

jX > L„ balls revolve around 

the common center of 
\ v — y 
\ j mass 
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t 

center of inertia C, Fig. 7.2. Because of the big mass of the Earth this 
point Ues inside the globe being shifted with respect to the center O. The 
angular velocities of rotation around C of both the planet and the satellite 
are evidently the same. 

-0 
Moon 

Earth 

Fig . 7 .2 : The Earth and the Moon a re o r b i t i n g the 
common center of i n e r t i a . 

Consider now the revolving reference frame where both the Earth and 
the Moon stay at rest. Inasmuch as the reference frame is noninertial every 
mass element experiences not only the force of gravity but a centrifugal force 
as well. The farther from the center C the stronger this force becomes. 

Let us imagine for simplicity that water is evenly spread over the entire 
surface of the globe. May this be an equilibrium? Obviously, not. Gravi
tational attraction to the Moon and centrifugal forces will destabilize the 
state. On the moon side the two forces are directed away from the Earth 
center and give rise to the water hump A, Fig. 7.2. But the situation on 
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the remote side is quite alike. As we step away from the common center 
of mass the centrifugal force increases whereas the attraction to the Moon 
falls down. The resultant force is again directed away from the center of the 
Earth and gives origin to the second hump B. The equilibrium configuration 
is represented in Fig. 7.2. 

Of course this explanation of tides is much simplified. It does not take 
into account the nonuniform distribution of water on the Earth, effects of 
attraction to the Sun and many other factors that may essentially influence 
the picture. Still the theory answers the chief question. Once the humps do 
not move (with respect to the rotating frame of reference) but the planet 
revolves around its own axis the tides must occur twice a day. 

Now it is the time to explain the principle of the moon-brake. It turns 
out that the humps actually lie not on the line connecting the centers of 
the Earth and the Moon (as it was shown for simplicity in Fig. 7.2) but 
are a little displaced, Fig. 7.3. The reason is that because of friction the 
ocean rotates together with the Earth. Therefore the mass of water in 
the humps is continuously renewed. However the deformation is always in 
retard with respect to the force that brings it on. (The force gives rise to 
an acceleration but it takes time for particles to gain speed and reach the 
place.) Thus the top of the hump that is the point of the highest tide is not 
at the point of the strongest attraction to the Moon which lies on the line 
connecting the centers. The hump is formed with a lag and it is shifted in 
the direction of the daily rotation of the Earth. According to the Fig. 7.3 
this implies, that the force of gravitational attraction to the Moon does not 
pass through the center of the Earth and brings about a torque that slows 
down the gyration. The duration of the revolution daily enhances! This 
was first recognized by the wonderful English physicist Lord Kelvina. 

The "moon-brake" operates flawlessly for many millions of years and has 
the capability to notably change the length of the day. Scientists discovered 
in corals that have lived in the ocean about 400 millions years ago structures 
called "diurnal" and "annual" rings. When the diurnal rings were counted 
it turned out that there were 395 of them per year! The length of a year that 
is the period of the circumvolution of the Earth around the Sun, probably, 
did not change since then. Hence at those times the day lasted only 22 
hours! 

a W . Thomson, (1824-1907), 1st Baron Kelvin since 1892; English physicist and mathe
matician, chairman of the London Royal Society. 
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Now the moon-brake keeps working on making days and nights longer. 
At the end of the story the period of the Earth daily rotation will get equal 
to that of the Moon orbiting and the impeding will cease. The Earth will 
forever remain turned to the Moon by the same side, like presently the 
Moon is. The increase of the day will affect the climate. The extended day 
on the sunny side of the globe will be opposed by the prolonged night on 
the rear. Cold air from the night side will rush to the warm hemisphere. 
Winds and dust-storms will break out . . . But the prospective is so far that 
the mankind will definitely find how to prevent these calamities. 

What is the effect of the moon-brake onto the du
ration of the lunar month (that is the period of 
orbiting of the Earth by the Moon)? 

+ 



PART II 

Saturday night physics 





We've got so accustomed to our circumstances that don't 
even notice many wonders and think about actual causes behind 
them. Yet at closer sight one discovers a great many grounds 
for contemplation. 

"When tossing pebbles into water, focus on the circles they pro
duce, otherwise your tossing will be a mere time-frittering," — 
wrote the great Koz'ma Prutkov^. 

We shall try to convince you that even the most improbable phe
nomena in the world around us can be explained by the ordinary 
physics. 

bKoz'ma Prutkov was the great Russian writer, poet and philosopher of nineteenth cen
tury. His selected works along with those by Alexander Pushkin and Mikhail Lomonosov 
may be found on the desk of any Russian scholar. 
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Chapter 8 

Why the violin sings 

The violin had no color, but sound i t had. 

N. Panchenko, The poem about a violin. 

When an object moves through a medium, there always appear resis
tance forces trying to slow the object down. It will be the force of dry 
friction when a body slides mechanically along a rigid surface; in a liquid 
or in a gas that will be respectively the liquid friction (viscosity) and the 
aerodynamic resistance, and so on. 

The interaction between a body and the surrounding medium is a rather 
complicated process leading usually to work-to-heat conversion of mechan
ical energy of the body. However, the reverse situation, when medium is in 
fact procuring body with energy is possible too. And this usually leads to 
some sort of oscillations. Just for example, the dry friction force between 
a pulled wardrobe (say you are moving) and the floor will brake it, slowing 
the motion; though the same force between the bow and string of a violin 
will make the string reverberate. As we will see later, the cause of vibra
tion in the latter case is the dropping dependence of friction on the velocity 
of the motion. The vibration indeed occurs when friction decreases with 
augmenting velocity. 

Let's illustrate generation of mechanical oscillations using as an exam
ple a concerto violin. The sound of violin is caused by the moving bow, 
right? It's impossible, of course, to explain here all the complicated phe
nomena involved in formation of a particular musical tone, yet let us try 
to understand in principle why the string starts vibrating when the bow is 

59 



60 Why the violin sings 

being smoothly pulled against it. 
The friction force between bow and string is the dry friction. We can 

easily distinguish two different kinds of friction — friction of rest and sliding 
friction. The first acts between touching surfaces of two abutted bodies at 
rest with respect to each other; the second — when one body is actually 
sliding along the surface of the other. 

As it's known, in the former case (no sliding), friction will balance an 
external force (being equal in magnitude and opposite in direction) up to 
a certain maximal value, called F^.. 

In turn, the sliding friction depends on the material and condition of 
the contacting surfaces, as well as on the relative velocity of the bodies. 
The latter circumstance we will discuss in more detail. The character of 
the relation between sliding friction and velocity varies for different bodies: 
often at first a drop in sliding friction is observed as velocity rises and, 
then, friction begins to go up too. Such dependence of magnitude of the 
dry friction force versus velocity is illustrated by the graph in Fig. 8.1. 
The friction force between the hair of the bow and a string behaves in 
this way too. When v, the relative velocity of bow and string, is zero, the 
friction between the bow and the string doesn't exceed FfT. Then, for the 
descending wing of the curve, 0 < v < vo, any slight increase of the relative 
speed, by say Av, leads to the corresponding decline of friction force and 
vice versa, when velocity is going down, the change of force will be positive 
(see Fig. 8.1). And, as we are going to show you in a minute, that's exactly 
due to this, not so evident at the first glance, feature that the energy of 
the string can grow on the expense of mechanical work done by the force 
of dry friction. 

o-Av v w+du 

Fig . 8 . 1 : Typical 
dependence of dry 
f r i c t i o n on r e l a t i v e 
v e l o c i t y . 

When the bow initially starts its motion, the string is getting drawn 
along with it, and the friction is compensated by the tension of the string, 
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Fig. 8.2. The resultant of the tension forces is proportional to the deviation 
x of string from the equilibrium: 

F = 2 T 0 s i n a « —-^-x, 

where / is the length of the string and T0 is the tension force, which for 
small stretches, x, can be taken as constant. Thus, when the string is 
being pulled along with the bow, the force F is growing until it reaches the 
maximal value of friction, FfT, and then the string begins sliding against 
the bow. 

Fig. 8.2: When string 

follows the bow 

without sliding the 

friction of rest 

compensates the 

resultant of the two 

tension forces. 

? F" 
: ;^4^ 

lF 

-^ 

Let's, just for the simplicity sake, assume for now that at the beginning 
of slipping, the friction force drops abruptly from the maximum rest value 
FfT down to a relatively weak force of sliding friction. In other words, we can 
approximately consider the slipping of the string as an almost free motion. 

At the exact instant when the string from clinging to the bow takes off 
on sliding, its velocity is equal to the that of the bow, and, therefore, it 
keeps moving in the same direction. Yet, now the net tension force, not 
compensated by anything, will start slowing the motion of the string down. 
Consequently, at certain moment string's velocity will drop to zero, the 
string will stop and, then, will reverse its motion and go back, against the 
bow. Further, after a maximal swing to the other side, the string will again 
have to start moving in the same with the bow direction. Yet during all 
this time, the bow continues to move with the same constant velocity u 
and, therefore, at some point, the speeds of string and bow will match both 
in their magnitude and, this time, in the direction too. So the slipping 
between string and bow disappears and the friction force will balance that 
of the string tension again. Now, as the string approaches its neutral initial 
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position, the tension force subsides causing the corresponding waning of 
the friction. And then, after the string passes the equilibrium position, 
everything happens again. 

The ensuing graph for the string deviation versus time is shown in 
Fig. 8.3, a. The periodic motion of the string is composed of two dif
ferent parts for each period. That is, for 0 < t < *i , the string moves at 
the same speed u with the bow so the deviation x is linearly proportional 
to the elapsed time ( tana = u). At t\, the "take-off" occurs and, then, for 
the interval t\ < t < t2, the dependence of x on time becomes a sinusoid. 
At the instant ti, when the tangent to the sinusoid has the same slope a as 
the starting linear piece of the curve (hence, the string and bow velocities 
are equal), the string is captured by the bow again. 

The Figure 8.3, a illustrates an ideal case, when there is no sliding 
friction force acting between the bow and the string and, consequently, 
there is no energy loss as the string moves freely. The total work performed 
by friction forces (in the intervals without slithering) in one complete cycle 
of oscillation of the string equals zero as well, because for negative x the 
mechanical work is negative — the friction force acts against the motion, 
whereas for x > 0 the work is the same in magnitude yet positive in sign. 

Now let's try to figure out what happens if the sliding friction force is 
not counted as negligibly small any more. Well, it should cause energy loss 
for one thing. The graph for the string motion with sliding is presented in 
Fig. 8.3, b. For the positive x-values, the curve is actually steeper than for 
the negative ones. Hence, now the clinging of the string to the bow happens 
at a smaller in magnitude negative deviation (—2:2 in the picture) than the 
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positive Xi at which the string starts slipping off the bow at first: Xi < x i . 
Resulting is the positive mechanical work done by the friction forces in the 
intervals when the bow and the string go along together: 

_ k(x1 — x2) 
A~ 2 

where fc = ^ is the proportionality coefficient between the force of friction 
without sliding that draws the string off the equilibrium position and the 
string swing a . 

This positive fraction of the total work does indeed compensate the en
ergy losses due to the sliding friction and makes the string oscillate without 
damping. 

Generally speaking, to replenish the energy, it's not at all necessary for 
the string to keep clinging to the bow. It's enough if their relative velocity 
v stays within the descending part of the dependency between the sliding 
friction and the relative speed of the bow and string (look back at Fig. 8.1). 
Now let's take a closer look at the vibration of the string in this case. 

Suppose the bow is being pulled with some constant speed u, and the 
string is driven away from its neutral equilibrium position by x0 so that the 
net tension force F(XQ) is again compensated by the sliding friction force 
Ffr(u). If, by chance, the string deviates in the direction of the motion of 
the bow, their relative velocity shall decrease causing friction to rise (notice 
that we are speaking of the "dropping" part of the F{T(u) curve!) which, in 
turn, makes the string stretch even more. As the string stretches further, at 
some point, the elastic force will necessarily exceed the friction (remember 
that the vector sum of tensions is directly proportional to deviation of the 
string from the neutral position, whereas friction is limited by F£), and 
the string will reverse its motion and go back in opposite direction. Then, 
continuing to move, the string will successively pass the equilibrium state, 
go on further, stop in the utmost position on the other side and, then, will 
repeat everything again... Thus oscillations will be amplified. 

It's important to notice that the described oscillations once started will 
proceed without dumping. Indeed, when the string moves with a velocity 
Av and u > Av > 0 in the direction of the bow, then the friction performs 
positive work. On the other hand, when going back the work of friction will 

aRemember that at the linear piece of the curve, Fig. 8.3, the force of friction is equal 
in magnitude to the resultant of the tension forces, Fig. 8.2 
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be negative. But the relative velocity vi — u — Av in the former case is less 
than that, v-i = u + Av, in the latter one, and on the contrary, the friction, 
FfT(u — Av), will be greater in the first situation than that, FfT(u + Av), in 
the second. Thus, the positive mechanical work done by friction when the 
string and bow are moving together surpasses the negative one performed 
when the string moves back, resulting in the positive net work during the 
vibration cycle. Consequently, the amplitude of vibrations increases with 
each successive oscillation. And it keeps going up until it reaches a certain 
limit. If v > vo so that the relative velocity of bow and string v finally goes 
out of the descending part of the graph F{T(v) (Fig. 8.1), then the negative 
work of friction can overcome the positive one, forcing the amplitude of 
oscillations to wane. 

As the result, a stable vibration with an equilibrium amplitude will be 
finally attained, for which the total work done by friction will be exactly 
equal to zero. (To be precise, the positive work during the cycle com
pensates the energy loss due to the air resistance, nonelastic character of 
deformation etc.). These steady oscillations of the violin string will proceed 
without damping. 

It's quite common that sound vibrations are excited when one body 
moves along the surface of another: dry friction in a door hinge causes it 
to screech; and so do our shoes, floor tiles and so on. You can produce 
screeching by just pressing and pulling your finger along, say, a smooth 
and firm enough surface5. And the phenomena which occur in these exam
ples may be very similar to the excitation of vibrations of the violin string. 
At first — there is no sliding, then, an elastic deformation develops, up 
to the point when the "take-off" happens and "their majesty" oscillations 
commence. And once having started, they don't subside abruptly rather 
continuing without significant damping because of that described "drop
ping" character of the friction forces procuring the required energy due to 
their mechanical work. 

If the dependence of friction force on relative velocity of moving sur
faces changes its character, the screech goes away. Everyone knows, for 
instance, that you can simply lubricate the surfaces to get rid of the irritat
ing screak. And the physical reason behind it is just trivially that the liquid 
friction is proportional to velocity (in case of low velocities) and, hence, the 
conditions required to induce and then sustain oscillations disappear when 

bChapter 9, "The chiming and silent goblets" gives a less trifle example of the kind. 
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you substitute dry friction with the liquid one. Inversely, when vibrations 
are desirable, participating surfaces are often treated in a special way so 
to reach a sharper decrease of friction force with increasing velocity. For 
instance, for this exact reason they apply rosin on the violin bows. 

No surprise that understanding the laws of friction often helps solving 
different practical and industrial problems. For example, while machining 
a metal piece, undesired vibrations of the cutter can develop. These vi
brations are caused by the force of dry friction between the tool and metal 
shaving slithering along its surface, Fig. 8.4, for the friction force versus 
speed relation for high quality types of steels may have that familiar "drop
ping" character. Which is, as we know by now, is the principal condition 
for exiting oscillations. A common way to preclude such vibration (which 
can turn out to be quite detrimental for both the cutter and the piece in 
work) will be to use along with naive lubrication a special sharpening of the 
cutter, basically to hone it a correct angle, so that the slithering wouldn't 
occur and there would be no reason for oscillations. 

F ig . 8 .4 : Vibra t ions 
of c u t t e r of machine 
t o o l may be e l iminated 
by a r i g h t choice of 
t h e sharpening angle . 

Can you describe (or even write a formula for) the 
motion of string subject to constant sliding friction? 





Chapter 9 

The chiming and silent goblets 

The carriage resembled an open shell made of glittering 
crystal; its two large wheels seemed to be built of the 
same material. When they were turning, they produced 
marvelous sounds: Full, yet still growing and approach
ing, these chords reminded the tones of glass harmonica, 
yet of amazing strength and power. 

E. T. A. Hoffmann, Klein Zaches. 

It's not a novel idea that one can make simple wine-glasses sing. How
ever, it turns out that there is a very peculiar way to do so. How peculiar? 
Well, you judge for yourself. 

If you dip your finger in water and start circling it carefully along the 
edge of a glass, wetting the rim constantly, at first, it makes a rather screech
ing sound, but then, after water has covered the glass edge thoroughly and 
uniformly, the tone should turn into something more melodic. By varying 
the pressing force of the finger, one can easily change the pitch of the pro
duced sound. The height of the pitch will also depend in this case on the 
size of the glass and thickness of its wallsa. 

Notice, by the way, that not every single glass is capable of making 
those chiming pleasing tunes, so the search for a suitable one may turn out 
to be a quite cumbersome affair and take a while. The best "singers" turn 
out to be very thin-walled goblets, those having shape of the paraboloid of 
revolution, with a long slim stem. Another critical parameter determining 

aThe mechanism of exciting sound is the same as in the bow-instruments, see Chapter 8, 
"Why the violin sings." 

67 



68 The chiming and silent goblets 

the resonant tone of the glass is the level of liquid in it: generally, the fuller 
is the glass the lower its pitch is. When the water level passes the midline 
of the glass, waves will develop on the surface of liquid, because of the 
wall shaking. The maximal disturbance marks the position of the finger 
inducing the sound at the moment. 

A famous American scientist (as well as one of the greatest statesmen 
in the history of his country — rare yet proven possible, at least back in 
those days, combination) Benjamin Franklin, who is mostly known for his 
experiments with atmospheric electricityb, had employed the discussed in 
the previous paragraph phenomenon to create a peculiar musical instru
ment, very similar to that described in Hoffmann's "??". That was a series 
of perfectly polished glass cups, each with a drilled orifice in the middle, 
arranged equidistantly on the same axle. There was also a pedal under
neath of the box where the cups on the axle were situated, kind of like 
in an old-fashioned sewing machine, to make the axle rotate. And just 
by simple touching with wetted fingers, one could change the tone of the 
system from a sound forte down to meager whistling. Now it is hard to 
believe, but the people who had heard this "goblet organ" playing assured 
that the harmony of its sounds was acting amazingly appeasing on both the 
listeners and the performer. In 1763 Franklin had given his own instrument 
as a present to an Englishwoman, Ms. Davis. She was demonstrating it for 
several years traveling around Europe, and then, the famous instrument 
had disappeared without a trace. Probably memories of that true story 
had reached E. T. A. Hoffmann, who was a talented musician himself, and 
were used in his "??". 

And since we are talking glasses, it seems also worth mentioning a rather 
interesting fact that, iconoclastic though it may sound, it's not actually 
accepted as a proper etiquette rule to clink the champagne glasses. Really. 
And the deal here is that for some, of course, purely physical reason goblets 
filled with champagne or any fizzy carbonated drink make, when clinked, 
an inexpressive muffled than sound. So what's the matter here? Why don't 
goblets filled with champagne ring? 

The physical phenomenon responsible for melodic ear pleasing tingle 
we hear clinking the glasses are the high frequency (that is, in the range 
10 — 20 KHz) sound and even ultrasound (higher than 20 KHz) waves 
excited in the resonators, which our glasses are in this case. When we 

b B . Franklin, (1709-1790), American public official, writer and scientist. 
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clink either empty glasses or glasses filled with a noncarbonated beverage, 
these oscillations once having been induced keep ringing for a rather long 
period of time. That, on the other hand, automatically suggests as a likely 
cause for the muffled sound produced by goblets filled with champagne 
those tiny pinching bubbles of carbon dioxide, stampeding from an opened 
bottle in their delectable effervescent rush. They may well lead to a strong 
scattering of those short wave sound oscillations in the goblet, in the way 
similar, for example, to that taking place in the atmosphere. Remember 
that fluctuations of molecular density cause scattering of sun light in the 
short wave part of the spectrum (see Chapter 4, "In the blue"). 

Even for the highest frequencies perceptible by human ear {y ~ 20 KHz), 
the wave length of sound in water, A = c / v ~ 10 cm R (c = 1450 m/s is 
velocity of sound in water), is considerably larger than the size of the CO? 
bubbles in champagne (say, about 1mm), and, consequently, the latter 
seem to be quite legitimate candidates to cause the Rayleigh-type scatter
ing of sound. Yet, let's look at the problem a bit closer. What does for 
instance our estimate for Ami„ really mean? Just for simplicity, let's forget 
for now about the complicated shape of a real goblet and think of a rect
angular box, with a plane one-dimensional expansion-compression sound 
wave in it. We can write for the excess air pressure in the box: 

Pe (x, t) = P0 cos f — - - ut J , (9.1) 

where PQ is the amplitude of pressure oscillations, u; is the sound frequency, 
A is the corresponding wave length and x is the coordinate along the axis 
of propagation. 

Since even the minimal value of A is well over the glass dimensions, 
x -C Ami„ the function Pe(x, to) (called also the pressure field of the sound 
waves) at any given instant to varies just slightly over the whole volume of 
the glass. Thus, the first term in (9.1) is vanishing small, and the "space-
time" distribution of the excess pressure is mainly determined by the second 
term in the argument of the cosine. This actually shows that because of the 
negligible value of x <C A there is an almost uniform yet rapidly changing 
excess pressure field inside the glass: 

Pe(t) = P0 cos u t, (9.2) 

Note the difference, by the way, between the shown pressure field evolu
tion (9.2) and conventional standing waves in a rigid box of length I. The 
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resonance condition for those would read: Z = ^ , where n = 1, 2 , . . . Such 
sound waves simply wouldn't fit in the glass. However the walls of a real 
glass are elastic take part in the oscillations of the contents. The vibrations 
of the walls transfer sound to the ambient air making it audible0. 

Thus, we can express the total pressure of liquid in the glass as the sum 
of Pe (t) and the atmospheric pressure: 

Pe (t) = Patm + Pa COSUt, 

and now are just one step away from understanding the true reason behind 
the observed fast damping of the ringing sound in the goblets with cham
pagne. And the answer is hiding in the fact that liquid saturated with gas 
turns out to be a so-called nonlinear acoustic medium. This piece of "sci
entific" vernacular means in reality the following. It's known that the solu
bility of gas in liquid depends on pressure, — the higher is the pressure the 
greater is the gas volume soluble in unit volume of liquid. But, as we have 
established already, the pressure field in the glass where sound oscillations 
are exited varies. At the moments when the pressure in the liquid drops be
low the atmospheric one, the outgassing consequently increases. Of course, 
the released gas bubbles distort the simple harmonic time-dependence of 
the pressure and in this particular sense one calls the gas saturated liquid a 
nonlinear acoustic mediumd. The outgassing inevitably takes energy from 
the sound oscillations making them wane much faster. At first after the 
glasses have been clinked, there are all kinds of sound frequencies exited 
in them; then, however, due to the sketched above mechanism, the high 
pitch-modes will subside far quicker than the low-pitch ones resulting in 
the muffled thump rather than the pure high-pitched ringing melody of 
crystal. 

Yet, it turns out, on the other hand, that gas bubbles in liquid not only 
do damp sound waves but can also in certain circumstances generate them. 
Indeed, it has been found recently, for instance, that sound oscillations can 
be excited by wee air bubbles in water when subjected to high power pulse 
laser radiation. The effect is caused by the impact of the laser beam upon 
the bubble surface, from which, because of the total internal reflection, the 
beam can bounce back. After such a "hit", the bubble quivers for some time 

c The crystal voice of empty wine-glasses proves that what we usually enjoy is not the 
solo of liquid contents but rather its duet with the splendid vessel. — A . A. 

dRemember the nonlinear sound distortions which are the nightmare of Hi-Fi fans. 
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(until the vibration is damped) exciting sound waves in the surrounding 
medium. Let's now try to evaluate the frequency of these oscillations. 

There are lots of important phenomena in nature, which, whatever dif
ferent they may seem, could be described by the same equation, the equa
tion of harmonic oscillator. These are different kinds of oscillations — a 
weight bouncing on a spring, atoms vibrating in molecules and crystals, 
electrical charge flowing back and forth from plate to plate of the capaci
tor in LC contour and well many others. The imperative physical feature 
uniting all the above examples is the presence of a "restoring force" that 
depends linearly on the displacement and always tends to bring the system 
back to the equilibrium, once it has been driven away from that by some 
external perturbation. And the gaseous bubbles vibrating in liquid are just 
one more example of such oscillatory systems. Hence, we can try to use 
the well-known relation for the vibration frequency of a mass on a spring 
to estimate the typical frequency of oscillations of the bubbles. Of course 
to do so, we have to figure out what would be in this case the "coefficient 
of elastic force" .e 

The first candidate for this part could be the surface tension a of the 
liquid: k\ ~ a; it has the desired dimension (N/m) at least. Instead of 
mass of the weight, it seems reasonable to put into the formula for the 
oscillator's natural frequency the mass of liquid involved in the bubble 
oscillations. Clearly the sought mass should be close to the volume of the 
bubble times the liquid's density: m ~ pr%. So for the natural frequency 
of the oscillations of the bubble, one can write the following expression: 

However it turns out to be not the only possible solution. We haven't yet 
utilized in any way another important parameter, that is the air pressure 
inside our bubble, PQ . When multiplied by the radius of the bubble, it gives 
the same [N/tn) dimension of the "elasticity coefficient" too, hi ~ PQ TQ . 
And after having plugged this new coefficient in the same relation for the 

"Coefficient of elastic force of a spring k characterizes the proportionality between the 
value of the restoring force F and the displacement i from the equilibrium: 

F = -kx. 
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natural frequency of oscillator, we obtain an entirely different value for the 
frequency of bubble's vibration: 

Which of these two values is the true one? Surprising though it may 
sound, yet both of them are correct, actually. They just correspond to two 
different types of oscillations of the air bubble. That's it. The first one 
represents oscillations occurring when the bubble was originally squashed, 
say by the laser impulse. In such a motion, the shape and, therefore, the 
surface area of the bubble are constantly changing, yet its volume remains 
the same. The resulting "restoring force", in this process, is determined by 
the surface tensionf. The second type, on the other hand, takes place when 
the bubble had been squeezed uniformly from all directions, and then let 
go. In this case, it starts throbbing already due to the pressure forces. And 
the second of the found frequencies indeed describes the radial oscillations 
of this kind. 

Because of the obvious asymmetrical character of the laser beam impact, 
the sound waves produced by the bubbles are likely to belong to the first 
of the two considered types. Further, if, for instance, the size of bubbles 
is known, one could determine the type of vibration from the frequency 
of the sound generated by the bubbles. In the discussed experiments, this 
frequency was found to be 3 - 104 Hz. Unfortunately dimensions of the 
tiny air bubbles in water are hard to measure with the sufficient degree 
of accuracy. It's clear though that they should be of the order of some 
fractions of a millimeter. After plugging i/0 = 3 • 104 Hz, a — 0.07 N/m, 
P0 = 105 Pa, p — 103 kg/m3, in the corresponding formula, one finds the 
characteristic dimensions of the generating sound bubbles, for both types 

fNotice that a whole bunch of different kinds of oscillations, in which the bubble's volume 
doesn't change is possible. Those vary from trivial alternated squashing and squeezing 
the bubble in various directions to much more outlandish transformations when the 
bubble turns into something like, say, doughnut. The frequencies of such oscillations 
may variegate somehow quantitatively yet remain of the same order of magnitude equal 
to 

^ 2 r o 
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of oscillations: 
i 

(73 
r\ ~ 5- = 0.05 mm; 

1 
P2 

r-i ~ —^—=0.3 mm. 

So, as it turns out, the size of the bubbles doesn't differ much, at least 
not enough for us to distinguish what type of oscillations was generated in 
the described experiment. As a sort of confirmation of the correctness of our 
reasoning (which used, mainly, the dimensional arguments), we can accept 
the fact that the estimated radii of the bubbles are in complete agreement 
with what we would expect from our day-to-day observations. 

Do you have any ideas why in the glass of cham
pagne the high-pitch overtones die out far quicker 
than the principal mode? 





Chapter 10 

The bubble and the droplet 

Pervasive and amazingly various are numerous guises of surface tension 
in the natural and technological world around us. It gathers water into 
droplets, because of it one can blow up a shimmering with rainbow soap-
bubble, or write with an ordinary pen. Surface tension plays also a signifi
cant role in the physiology of human body. It's been utilized in the space 
technology too. And why, after all, does the surface of liquid behave in the 
way it does, like a stretched elastic membrane? 

The molecules in the narrow layer, real close to the liquid surface, could 
be considered as "dwelling" in very special circumstances. They happen to 
have neighbors, the identical to them molecules, only on one side, whereas 
the "inner" denizens are completely surrounded by their twin looking (and 
acting) relatives. 

Because of attractive interaction between the closely lying molecules the 
potential energy of each of them is negative. Its absolute value, on the other 
hand, could in first approximation be premised as proportional to the num
ber of the nearest neighbors. Then it's clear that surface molecules, each 
having fewer neighbors right next to it, must have a higher potential energy 
than the ones in the volume of the liquid. Another factor raising the po
tential energy of the molecules in the surface layer is that the concentration 
of molecules in the liquid decreases near the surface. 

Of course, molecules of liquid are in their incessant thermal motion 
— some of them dive inside, leaving the surface, and others go up to take 
their place. However, one can always speak of the average surplus potential 
energy of the surface layer. 

The reasoning above shows that in order to extract a molecule from 

75 
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inside the liquid up to the surface, external forces must perform a positive 
work. Quantitatively this work is expressed in by the surface tension a, 
which is equal to the additional potential energy of molecules occupying a 
unit surface area (compared to the potential energy these molecules would 
have if they remained inside). 

We know that the most stable, among all possible states of a system, is 
that with the lowest potential energy. In particular liquid will always try 
to assume the shape corresponding to the minimal surface energy for the 
given conditions. This is the origin of surface tension, which tries actually 
to always shrink the surface of liquid. 

10.1 Soap-bubbles 

Paraphrasing the great English physicist Lord Kelvina, you can simply blow 
up a soap-bubble, stare at it, study it all your life long and still be able to 
extract more and more lessons of physics. For instance, the soap film is an 
excellent object for exploring various effects of surface tension. 

Gravitational forces do not play any noticeable part in the considered 
case, for the soap film is very thin and, therefore, its mass is negligible. So 
the protagonist here will be the surface tension force which, as we've just 
shown, will try to make the surface area of the film as small as possible, 
within the given circumstances, of course. 

But why necessarily the soap films? Why can not one, for example, 
study, say, films of the distilled water? Especially considering the fact that 
its surface tension is several times that of the aqueous soap solution (just 
a fancier name for the soapy water). 

It turns out that the answer does not depend so much on the value 
of the surface tension coefficient, but lies rather in the structure of the 
soap film itself. Indeed, any soap is abundant with so called surface-active 
agents (surfactants), pretty long organic molecules with their two ends 
having completely opposite affinity to the water: that is, while one end 
(called "the head") clings to water avidly, the other one ("the tail") stays 
completely water indifferent. This" leads to the rather complex structure 
of the soap film in which the soapy solution is armored by a fence made of 

aSee page 53. 
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those densely packed highly oriented layers of the surface-active agentsb, 
Fig. 10.1. 

F ig . 1 0 . 1 : S t a b i l i t y I I I I I I I I I I I 
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guaranteed by presence • J *^ » \ "•*» 
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organic molecules. 

But for a moment, let's go back to our soap-bubbles. Most of us not 
only just marveled these gorgeous creations of nature at one occasion or 
another, but were making them ourselves. They are so perfectly spherical 
in their shape and can hover in the air for so long, before rupturing finally 
against an obstacle. The pressure inside them appears to be higher than 
the atmospheric one. This additional pressure is due to the fact that the 
soap film of the bubble, attempts to minimize the surface area and gives to 
the air inside an extra squeeze. Moreover, the smaller the bubble radius R 
is, the higher is the additional pressure inside. Now we shall try to find the 
magnitude of this addition, APgpfe. 

Let's conduct a so-called mental experiment. Suppose that the surface 
tension of the film of the bubble drops a tiny bit, and its radius increases, 
consequently, by a certain value, SR -C R, Fig. 10.2. This, in turn, causes 
the following increase of the external surface area: 

SS = 4n(R + 6R)2 -4nR2^ 8nRSR; 

(S = 4irR2 stands for the surface area of the sphere). And, therefore, for 
the incremental surface energy, one can write: 

8E = (T(2dS) = 16iraRSR, (10.1) 

(since SE is proportional to the tiny SR, the surface tension coefficient a 
can be assumed to be constant). 

bSurfactants are mainly used in order to reduce the surface tension and improve wetting 
properties of detergents. In the mean time they help to stabilize the film and prolong 
the lifetime of soap-bubbles. —A. A. 
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By the way, notice the extra "2" factor showing in (10.1), although 
absent from the original definition of surface energy. That is because now 
we have taken into account both surfaces of the bubble, its internal surface 
as well as the external one; when the bubble radius grows by SR each of its 
surfaces stretches by additional 8ir R SR. 

This fictitious increment of surface energy thanks to mechanical work of 
the compressed air trapped inside the bubble. The pressure in the bubble 
remains almost the same when its volume grows by a small amount SV so 
one can equate this work to the enhancement of surface: 

SAafr = APsph SV = SE. 

The volume change here, on the other hand, is equal to the volume of the 
thin-walled spherical shell, Fig. 10.2: 

SV = —(R + 5R)3 -^-R3*i 4wR2 6R, 

entailing, 

SE = 4TrR2AP8ph6R. 

Now compare this expression to the earlier established formula (10.1 ). 
This gives for the additional pressure inside the spherical soap-bubble that 
balances the surface tension forces: 

4a 4CT' n , 

R R 
(10.2) 
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(We denoted by a' — 2a the doubled coefficient of surface tension of the 
liquid). 

Obviously, in case of a single curved surface (for instance, that of a 
spherical droplet), this additional pressure would be SP8ph — 2er / R. This 
relation is called the Laplace formula0. The reciprocal of radius is conven
tionally called the curvature of the sphere: p — 1/R. 

Thus we have arrived to the important conclusion that the incremental 
pressure is proportional to the sphere's curvature. Yet sphere is not the only 
shape a soap-bubble can take. Indeed, having placed the bubble between 
two hoopsd, for example, one can easily stretch it in a cylinder crowned by 
round spherical "caps", on its top and bottom Fig. 10.3. 

F ig . 10 .3 : With t he 
help of wire frames 
you may make a 
c y l i n d r i c a l 
soap-bubble. 

What will the value of the additional pressure be for such an "unortho
dox" bubble? It's clear that the curvature8 of cylindrical surface varies in 
different directions: it is zero along the generating line (for cylinders that 
is straight), however for the cross section perpendicular to the axis, the 
curvature equals 1 / R , where R is the radius of the cylinder. — Well, then 

cPierre-Simon Laplace, (1749 - 1827). A great French mathematician, one of that splen
did constellation of French mathematicians, contemporaries of the Great French Revo
lution •— J. L. Lagrange, L. Carnot, A. M. Legendre, G. Monge, etc. Laplace became 
the best known for his contribution to the theory of probability and celestial mechan
ics, as well as for the famous quote from Napoleon that he "carried the spirit of the 
infinitely small into the management affairs", when the scholar had miserably failed in 
his fast-ended assignment as "Minister of the Interior". 

dBefore touching a bubble you must dip the hoops into the soap solution. —A. A. 
eWhat is the curvature of a plane (two-dimensional) curve? For a circumference it is 
defined in the same way as for the sphere: p = 1 / R , where JR is the radius. Each tiny 
piece of any other curve can, just the same, be considered as an arc of certain radius. 
The reciprocal of this radius is called the curvature of the plane curve at the given 
point. 
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what value of p should we substitute into the previously derived formula? 
It turns out that the difference of pressures on the two opposite sides of an 
arbitrary surface is defined by the average curvature of the latter. Let's try 
to figure out what will it be for our right cylinder? 

First, erect a normal* to the cylinder surface at a point A, and then 
construct a set of planes passing through the normal. The resulting cross 
sections of the cylinder by these planes, (called the normal sections), can 
be either a circle, or an ellipse, or even degenerate into two parallel straight 
lines, Fig. 10.4. Surely, their curvature at the given point is different: it 
is maximal for the circle and minimal (nil actually) for the longtitudinal 
section. The average curvature is defined then as the half sum of minimal 
and maximal values of the curvature of the normal sections at this point: 

Pmax ~r Pmin 

The given definition applies not only to the cylinder, — in principle, the 
average curvature at a given point can always be calculated in this manner. 

For the lateral surface of a cylinder, its maximal curvature at any point 
is Pmax = V-RJ where R is the radius of the cylinder, whereas the minimal 
value pmin = 0. Thus, the average curvature of the cylinder is p — 1/2R, 
and the additional pressure inside the cylindrical bubble is: 

So it turns out that the additional pressure in the cylindrical bubble is 
equal to that in the spherical bubble of the doubled radius.That makes the 
radii of the spherical caps of such a cylindrical bubble twice the radius of 
the cylinder itself. Hence the caps are just spherical segments rather than 
the full hemispheres. 

And what would happen if one eliminates the additional pressure in the 
bubble completely by, say, pricking its caps? The first solution popping to 
head would be that, since there is no any additional pressure, the surface 
shouldn't have any curvature at all. Yet surprisingly, the walls of the cylin
der are actually bending inside taking the shape of a catenoid (from the 
Latin catena for "chain"). This shape can be generated by rotating the so 

f That is the line perpendicular to the tangential plane at the point A. —D. Z. 
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called catenary line, around its X-axis6. So what's the matter here? 
Let's examine this surface closer, see Fig. 10.5. It's easy to notice that its 

narrowest (waist) portion, also called saddle, is concave as well as convex. 
Its section across the rotation axis is obviously a circumference, on the 
other hand, dissecting along the axis gives, by definition, the catenary. The 
inward curvature should raise pressure inside the bubble, but the opposite 
curvature would lower it. (Pressure under a concave surface is higher than 
the pressure above it.) In the case of catenoid , the two curvatures are 
equal in magnitude but have the opposite directions, therefore, negating 

8Catenary is the curve formed by a perfectly flexible uniform chain suspended by the 
endpoints. The form of the curve (up to similarity transformations a —• a a) is given 
by the equation: 

y= g ie" + « - ) -

—D.Z. 
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each other. The average curvature of this surface is zero. Hence, there is 
no additional pressure inside such a bubble. 

F ig . 10 .5 : Left t o 
i t s e l f t he soap f i lm 
takes t he form of 
ca tenoid . This 
surface has zero 
average curva tu re . 

The catenoids are not unique though, and there is a bunch of other sur
faces, seemingly "badly" curved in all possible directions, yet having their 
average curvature equal to zip, and consequently, not exerting any extra 
pressure. To generate these surfaces, it's enough to immerse a wire frame 
into a soapy water. While lifting the frame back from the solution, one can 
immediately see various surfaces of zero curvature, formed depending on 
the frame shape. However, catenoid is the only surface of revolution11 (be
sides the plane, of course) with zero curvature. Surfaces of zero curvature 
bounded by a given closed curve may be found with the help of methods 
of a special branch of mathematics, called differential geometry. An exact 
mathematical theorem claims that surfaces of zero curvature have the min
imal area among all the surfaces with the same boundary; the statement 
which seems pretty natural and obvious for us now. 

A plethora of combined together soap-bubbles makes up froth. In spite 
of the seeming disorder there is an indisputable rule held in the embroidery 
of soap films in the foam: the films intersect one another only at equal 
angles, Fig. 10.6. Indeed, look for example at the two joint bubbles par
titioned by the common wall, Fig. 10.7. The additional (with respect to 
atmospheric) pressures inside the bubbles will be different. According to 
the Laplace formula, (10.2): 

So the common wall of must be bent in order to compensate the pressure 

hThat is the surface which may be generated by rotation of a curve. 
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difference in the bubbles. Its radius of curvature, hence, is determined by 
the expression: 

2a' _ la' la' 

R3 -R2 -Ri 

which gives after regrouping 

R RxR2 

Ri — R2 

Again, Fig. 10.7 depicts a cross section of these two bubbles by a plane pass
ing through their centers. The points A and B here mark the intersections 
of the plane of the picture with the circumference where the bubbles are 
touching. At any point of this circumference there are three films coming 
together. As long as their surface tension is the same the tension forces can 
balance each other only if the angles between the crossing surfaces are the 
same. Therefore, each of them is equal to 120°. 

F ig . 10.6: Sect ion of soap f ro th shows t h a t 
j o in ing f i lms make equal ang les . 
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Fig . 10 .7 : The angle 
between tangents t o 
contac t ing 
soap-bubbles i s 120°. 

10.2 On different kinds of droplets. 

The shapes of droplets. Here things are becoming a bit more complicated. 
Now the surface tension which, as always, tries to minimize the area of the 
surface is counteracted by other forces. For example, a liquid droplet almost 
never is spherical, although it is a sphere that has the smallest surface area 
among all shapes for a given volume. When sitting on a flat steady surface, 
droplets look rather squashed; when in a free fall, their shapes are even 
more complex; only in absence of gravity in space they finally assume the 
form of perfect spheres. 

The Belgian scientist J. Plateau1, in the middle of nineteenth century, 
was the first one to come up with a successful solution of how to eliminate 
effects of gravitation when studying surface tension of liquids. Sure enough, 
back in those days researchers did not even dream of having genuine weight
lessness, and J. Plateau simply suggested compensating the gravitational 
forces with Archimedean buoyancy force. He had submerged his subject 
liquid (oil) in a solution with the exactly same density, and, as his biogra
pher tells us, was utterly surprised to see that the oil droplet had developed 
a spherical shape; so he had right away used his golden rule to "become sur
prised in the right time", and was then experimenting and contemplating 
upon this peculiar phenomenon for a long while. 

He had used his method to study a variety of entailing effects. For 
instance, he meticulously investigated the process of droplet formation at 

'Joseph Antoine Ferdinand Plateau, (1801-1883), Belgian physicist; Works in physiolog
ical optics, molecular physics, surface tension. Plateau was the first to put forward the 
idea of stroboscope. 
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the end of a tube. 
Normally, no matter what slow a droplet is being made, it separates from 

the tip of the tube so fast that human eye can't follow the details of this 
event. So Plateau had to dip the tip of the tube he was using into a liquid, 
with the density just slightly less than that of the droplets themselves. The 
gravitational force influence was, by doing so, substantially diminished and 
as a result, really large droplets could be formed and the process of their 
taking off from the end of the tube could be clearly seen. 

In Fig 10.8 you see the different stages droplets undergo in their forma
tion and separation (of course, these pictures were taken using the modern 
high-speed filming technique already). Let's try now to explain the observed 
sequence. During the slow growth stage, the droplet can be accounted as 
being in equilibrium at each particular instant. For a given volume, the 
droplet shape is determined by the condition of minimal sum of its surface 
and potential energies, the latter of which is the result of the gravitational 
forces, of course. The surface tension is trying to shape droplets spherically, 
whereas the gravitation, on the contrary, tends to situate the droplet's cen
ter of masses as low as possible. The interplay of these two yields the 
resulting vertically stretched form (the first shot). 

F ig . 10 .8 : High-speed photographs of d rop le t 
t ake-of f . 

As the droplet continues to grow gravitation becomes more prominent. 
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Now most of the mass accumulates in the lower part of the droplet, and the 
droplet begins to develop a characteristic neck (the second shot of Fig 10.8). 
The surface tension forces are directed vertically along the tangent to the 
neck, and for some time they manage to balance the droplet's weight. But 
not for long: at certain moment just a slight increase of the droplet's size is 
enough already for gravitation to overtake the surface tension and to break 
this balance. The droplet's neck then narrows promptly (the third shot), 
and off the droplet finally goes (the fourth shot). During this last stage, 
an additional tiny droplet forms of the neck and follows the big "maternal" 
one. This secondary little droplet (called the Plateau's bead) is always 
there, however, because of the extreme swiftness of the droplet leaving the 
tap, we basically never notice it. 

We won't be going into details of the formation of these collateral little 
droplets here it is a pretty complicated physical phenomenon. We will 
rather try to find an explanation of the observed shape of the primary 
droplets in their free fall. Instant photographs of the falling droplets show 
clearly almost spherical shape of the little secondary drops, while the big 
primary ones look rather flat, something like a bun. Let's estimate the 
radius at which droplets start losing their spherical shape. 

When a droplet is moving uniformly (at a constant speed), the force 
of gravity acting, say, on the narrow central cylinder AB of the droplet, 
Fig. 10.9, must be balanced by forces of surface tension. And this auto
matically requires that the radii of curvature of the droplet at A and B 
should differ. Indeed, the surface tension produces the additional pressure, 
defined by the Laplace formula: AP^ = a' / R, and, if the curvature of the 
droplet surface at the point A is greater than that at the point B, then 
the difference of these Laplace pressures could compensate the hydrostatic 
pressure of liquid: 

Let's check by how much should RA and RB really differ to satisfy the 
above relation. For tiny little droplets with radii of about 1 fj, (10~6 m), the 
value of p g h w 2 • 10 - 2 Pa, whereas APL = a' / R » 1.6 • 105 Pal So, in this 
case, the hydrostatic pressure is so small when compared to the Laplacian 
that one can safely disregard it at all, and the resulting droplet will be very 
close to an ideal sphere. 

But it's a completely different story for a drop of, say, 4 mm radius. 
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Fig . 10.9: Because of 
hyd ros t a t i c p ressure 
curvatures a t po in t s 
A and B a re 
d i f f e r e n t . 

Then the hydrostatic pressure is already p g h « 40 Pa, but the Laplacian 
one is AP/, = 78 Pa. These are the values of the same order of magnitude, 
and, consequently, the deviation of such a droplet from the ideal spherical 
shape becomes quite noticeable. Assuming RB = RA + $R and RA + RB = 

h = 4 mm, one finds 6R ~ h y(pgh + 1 - pgh lmm, and the 

difference of the radii of curvature at A and B now turns out to be of the 
same order as the size of the droplet itself. 

These, just performed, calculations show us for what kind of droplets 
we should expect that their shape substantially deviates from the sphere. 
However, the predicted asymmetry turns out to be opposite to the observed 
in the experiment (Real droplets in photographs are flattened from the 
bottom!). What's the matter here? Well, the thing is that we believed the 
air pressure to be the same over and under the droplet. And it is really 
true for slow moving drops. But when the speed droplet is sufficiently 
high, the surrounding air does not have enough time to smoothly flow 
around. So there appear a region of higher pressure before the droplet and 
an area of lower pressure right behind it (where real turbulent vortexes are 
formed). The difference of the front and back pressures can actually exceed 
the hydrostatic pressure, and the Laplace pressure now must compensate 

this difference. In such circumstances, the value of ^ ^— turns negative, 
meaning that RA is now greater than RB- That (to our final satisfaction) 
is exactly what has been seen in the experimental pictures. 

And in the end, just a short quiz about the giants and whoppers. Have 
you ever seen those among droplets? Not many. They simply do not survive 
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under the normal circumstances. And for the good reason: droplets of large 
radii turn out to be unstable and spatter into a bunch of little ones almost 
instantly. It's the surface tension that assures longevity of a droplet on a 
hydrophobic surface. Yet once the hydrostatic pressure becomes greater 
than the Laplacian, the droplet spreads over the surface and breaks into 
smaller ones. One can use the following relation to estimate the maximal 
radius of a still stable droplet: pgh^> j ^ , where h ~ R. Prom which, one 
can find: 

For water, for instance, Rmax » 0.3 cm (of course, this is just the order 
of magnitude estimate of the maximal size of droplets). That's why we 
never see, for example, really gigantic droplets on the leaves of the trees or 
other nonwettable surfaces. 

Could it happen that four soap Elms met at right 
angles along a line? 



Chapter 11 

The mysteries of the magic lamp 

. . . "Simmetriads" appear spontaneously. Their birth 
resembles eruption. All of a sudden, the ocean starts 
coruscating as if tens of square kilometers of its surface 
were covered with glass. Short while later, this glassy 
envelope pops up and bursts outwards in a shape of 
a monstrous bubble, in which, distorted and refracted, 
arise the reflected images of the whole firmament, the 
sun, clouds, the horizon... 

Stanislaw Lem, Solaris. 

The series of pictures, shown on the third page of the cover, haven't 
been taken neither on Solaris, nor from a spaceship diving in the recondite 
abyss of Jupiter' atmosphere, nor from the window of a bathyscaphe having 
dared to approach an erupting underwater volcano. Not even close. They 
are just photographs of working Lava-lamp, a gadget anyone could without 
much trouble find, for example, in a "Hands-on" toy shop or sometimes in 
a big department storea. And yet, it turns out that this seemingly simple 
device conceals plenty of beautiful and subtle physical phenomena. 

The design of the lantern isn't very complicated. It consists of a cylinder 
with transparent walls, in the base of which under its glass bottom, a 
regular electrical bulb is mounted. The glass in the lower part is covered 
with a multicolor light filter, and a coiled metal wire is wrapped around 
the bottom perimeter Fig. 11.1. One sixth of the cylinder is filled with a 

aIt 's going to cost you fifty bucks though. In the long desisted Soviet Union the same 
gadget would run you only one tenth of that. — It's just one more example of how 
much the cost of research may vary depending on where one conducts the experiments. 

89 
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wax-like substance (which we will call from now on substance A), and the 
rest of its volume is filled with a transparent liquid (say, liquid B). The 
particular criteria for choosing these substances, as well as their properties, 
will be discussed a bit later, when we will be closely studying the physical 
processes taking place in the lamp. 

It appears more convenient to conduct observations of the Lava-lantern 
in the dark, having it as the only source of light. So, let's turn it on and 
prepare to wait. As we will see, the events taking place inside the lamp 
could be separated into several stages. We will call the first one "tie phase 
of rest and accumulating the strength". 

The substance A is amorphous and, therefore, does not have strict, well 
ordered internal structure6. As its temperature goes up, it becomes more 
and more malleable, softens and gradually turns liquid. It's worth recalling 
at this time a principle difference between the crystalline and amorphous 
substances. For the former ones, this solid-to-liquid transition (melting, 
in ordinary words) happens at a certain temperature point and requires 
a particular amount of energy (the heat of melting), which is expended 
for breaking the material's crystal structure. On the contrary, solid and 
liquid states of an amorphous substance aren't critically different. When 
the temperature is rising, amorphous materials simply soften and become 
liquidlike. 

When turned on, the bulb of the lantern, illuminating the cylinder from 
the underneath through the color filter with a kind red-green glow, serves 
also as the heater. In the bottom floor, close to the bulb, there consequently 
develops a "hot spot" (the area of elevated temperature). Substance A in 
this hot region becomes softer, whereas in the same time neither the upper 
crust of A, nor the liquid B have had enough time to warm up remaining 
relatively cold. As larger and larger part of A is softening, the top solid 
crust becomes thinner and thinner. Besides, due to the thermal expansion, 
volume of the lower, now liquid, part of A tends to increase, raising the 
pressure underneath the crust. At some moment, A finally breaks the crust 
and lunges bubbling upwards. It's like a small acting volcano is born. The 
quiescent phase of "rest and accumulating" is over and the new period of 
"volcanic activity" kicks in (see Fig. 2 on the third page of the cover). 

The substances A and B are chosen in such a way that the density of the 

bWe'll dwell on the difference between crystalline and amorphous substances later in 
Chapter 17. 
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warmed, rushing up from the crack, A was slightly higher than that of still 
rather cold B, causing the new portions of A, successively leaving the rift, 
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to surface one after another0. On their way up, these pieces start cooling 
down and, when reaching surface, become solid again, assuming various and 
quite peculiar at times shapes. Yet now their density is back to the initial, 
higher than the density of B, value, and these "smithereens" begin to sink 
down slowly. Some of them, usually the smaller ones, however, continue to 
hover by the surface for a long time. And the reason for this "recalcitrant" 
behavior is, of course, our old acquaintance the surface tension. Indeed, 
A and B are opted so that the B-liquid does not wet the .A-solid. Hence 
the surface tension force acting on fragments of A is directed up, trying 
to push them out from the liquid. It's exactly the same reason why, for 
example, the water-striders can freely stay (and quite audaciously run) on 
the surface, or an oiled metal needle does not founder. 

In the meanwhile, the excessive pressure in lower part of the cylinder, 
under the crust, has been relieved, the edges of the crack have become 
molten, and new portions of melted A are continuously trickling out of 
the crater. However, now they don't sever in the form of bubbles, yet 
rather stretch leisurely as an extended upward narrow stream. The outer 
surface of this stream, in contact with the cold B, quickly cools down and 
stiffens, producing a sort of trunk. And if one tries to look through this 
trunk, one may well get surprised, for the trunk turns out to be a hollow, 
narrow walled tube, filled with liquid B. The explanation would be that 
when the stream of melted A leaves the crater and runs upwards, at some 
point, it simply doesn't already have enough material to continue growing. 
Then, pressure inside the trunk decreases and, resulting from that, a crack 
develops somewhere by the junction between the crater edge and the trunk, 
and then, sure enough, the cold liquid B starts pouring into the cleft. The 
top of the A tube in the meantime keeps going up, and the liquid B fills 
the tube inside, cooling down and shaping the tube's inner walls, finally 
causing them to completely solidify. 

As the vine of the volcanic plant makes it way to the surface, on the 
bottom of the lantern the melting continues and the next ball of the "hot" 
liquid A leaves the crater. It goes up, but now it goes up inside of the 
developed tube, and when it gets to the top of the tunnel, the ball, still 
being warm enough, extends the tube by another incremental bit. So the 

cThis resembles the famous experiment, in which a droplet of aniline, that at first peace
fully rested at the bottom of a tall glass cylinder with water, was immediately starting 
up to the surface as soon as the temperature reached about 70° C and the aniline's 
density became less than that of water. 
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plant keeps on growing, adding one by one these successive blocks (see 
Fig. 3 of the third cover page). Soon enough, shoving off the crusty chips of 
the preceding "volcanic activity", there start protruding another stem near 
the first one, and maybe another, after. These esoteric "underwater" plants 
swirl and intertwine, like those exotic shoots of jungle verdure, among the 
falling rocks, continuing at leisure descend from the surface; and the bottom 
floor, strewn with already landed boulders of A, just adds a completing 
touch to this mysterious superlative happening. The picture halts for a 
time. We could name this stage "the phase of the rocky forest". 

If at this point, one turns the lantern off, the "petrified thicket" will 
remain there "forever" and never the lamp will be able to return to its 
original, two clearly segregated phases, stated. Yet, surprisingly though it 
may sound, after the kaleidoscope of the described already events, we have 
not still reached the working regime of our magic lamp. So let's keep it on 
and continue to watch. 

As time goes, the liquid B is still warming up, the resting on the floor 
boulders are starting to melt again, the tangled vines of the magnificent 
plants are wilting down. An interesting fact: there are no really squeezed 
shapes among the droplets the liquefied rocks become. They all are turning 
out quite spherical. Under the normal conditions, the force squeezing water 
droplets on a hydrophobic surface is their weight. And it is balanced by 
the force of surface tension, tending to make the drops ideally spherical, 
for sphere has the minimal surface area for a given volume. In the Lava-
lamp's flask, besides gravity and the surface tension, there is Archimedean 
buoyancy force also acting on the droplets, and, because of the closeness of 
the densities of A and B, almost equalizing the gravitational force. So the 
droplets happen to be in a kind of nearly weightless situation, with nothing 
to preclude them from "donning" their predestined "round" habiliment (we 
have already discussed that topic in Chapter 10). 

For a single droplet, in absence of gravity, the ideal spherical form is the 
most energetically favorable one. For two, or several drops, touching each 
other, from the same logic, it would be more beneficial to merge into one, 
because the surface area of a single large ball is less than the total area of 
surfaces of several smaller ones, of the same aggregate mass (we will let the 
reader to check this statement on her own). However, when looking how it 
works in the Lava-lantern, one notices that those almost spherical droplets 

dUnless you switch it on again. — A . A. 
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of A tend to linger together without actually coupling. It seems especially 
striking if one remembers how promptly, almost momentarily, the mercury 
or water droplets, for example, couple on an unwettable surface. What 
does after all determine the time it takes for, say, two droplets to join? 

Interestingly enough, but this question was attracting attention of dif
ferent researchers and engineers since a long while ago. And not only from 
the point of a simple scientific curiosity. Yet also because of its critical im
portance for understanding physical processes in some very practical areas 
such as, for instance, powder metallurgy, when the preliminary powdered 
into grains metals are pressed and baked together to produce new alloys 
with needed physical properties. Back in 1944, the bright Russian physi
cist Yakov Prenkele had proposed a simple yet quite useful model of such 
a merging process in his pioneering work, which became a fundamental in 
establishing the theoretical basis for this important branch of modern met
allurgical technology. And now we are going to use the underlining idea 
of this his work to estimate the time it would take for two droplets in the 
magic Lava-lantern to couple. 

Let's consider two identical droplets in the close proximity, so that they 
start touching each other. At the point of their contact, there starts, then, 
developing a connecting "isthmus" Fig. 11.2, which continuously grows as 
the two droplets merge. We will use the energy considerations (for it is 
the simplest and the shortest way) to estimate the coupling time. The 
total energy available for the system of the two drops AES results from the 
difference between surface energies of its initial and final states, that is the 
summed surface energy of the two separate droplets of radii r0 and the big 
"unified" droplet of the radius r: 

AES =8narl -4irar2. 

Since after merging the total volume of the drops does not change, one can 
write the following equality: 4^r3 = 2 • ̂ f rfj, and find r = r$ \/2, so that 

AEs=47ra(2-2i)rl. (11.1) 

eYa. I. Frenkel, (1894-1952), specialist in solid-state physics, physics of liquids, nuclear 
physics etc. Probably it's worth mentioning that in 1936 Ya. Frenkel had independently 
of N. Bohr proposed the so-called drop nuclear model. In this context coalescing droplets 
stood in direct relation to problems of nuclear synthesis. —A. A. 
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Fig. 11.2:Initial 
stage of the droplet 
coalescence. 
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According to the Prenkel' idea, this additional energy is spent for work 
against forces of liquid friction, appearing in the process of redistributing 
droplet material as well as the surrounding medium, during the droplet 
merging. We can estimate this work by the order of magnitude. To find 
the liquid friction force, we will apply the famous Stokes' formulaf for a 
spherical ball of radius R moving with velocity v in a liquid of viscosity n: 
F = —67r r/ Rv. We suppose further that viscosity of the droplet material is 
significantly higher than that of the surrounding liquid B, which allows us 
to leave T)A in the Stokes' expression as the only viscosity coefficient8. Also, 
we may plug ro in the place of R. And then, noticing that the same quantity 
characterizes the scale of mutual displacement of the droplets when they 
merge: Aa; ~ ro. So finally, one could write for the work of the liquid 
friction forces: 

AA ~ 6wr)ArQV. 

Prom this expression, it's clear that the faster droplets are merging the 
greater amount of energy is required (because the liquid friction force in
creases with speed). However, the available energy resource is limited by 
A-Eg, (11.1). So these two relations will provide us the searched merging 
time TF (called the Frenkel' time of merging). Assuming v ~ ro / TF to be 

fGeorge Gabriel Stokes, (1819-1903), Renowned British physicist and mathematician, 
mostly famous for the theorem and the formula, both having commemorated his name. 

gSure enough the Stokes' expression was derived for a different situation, when a spherical 
body moved in viscous liquid. However, it's pretty obvious that in the case of two 
merging droplets, the liquid friction force can only depend on viscosity, droplet size and 
the speed of the process. Hence, from the dimension considerations, Stokes' formula 
turns out to be the only combination of these three physical qualities with the dimension 
offeree (and we do not care of the exact proportionality coefficient, for our estimate is 
by the order of magnitude only). 
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the process speed, we find: 

TF 

and finally: 

roVA 
TF ~ • 

a 
For water droplets of, say, r0 ~ 1 cm, a ~ 0.1 N/m and r) ~ 1 0 - 3 kg/(m-

s) this time turns out to be around just evanescent, ~ 10 - 4 s. Yet, for exam
ple, for the much more viscous glycerin (agi ~ 0.01 N/m, r)gi ~ 1 kg/(in • s) 
at 20° C) , the corresponding time is already ~ 1 s, proving the fact that 
for different liquids, depending on their viscosity and surface tension coef
ficient, TF can vary within a rather broad range. 

It's worth emphasizing at this point that even for the same liquid, due 
to the strong temperature dependence of viscosity, Frenkel' time can vary 
quite a bit. Going back to the glycerin, for instance, its viscosity drops 2.5 
times when the temperature rises from 20° to 30° C. The surface tension 
coefficient, on the other hand, stays pretty indifferent to the temperature 
variation, — in the considered temperature range, agi doesn't change by 
more than a couple of percent. This allows us to safely assume that the 
temperature dependence for Frenkel's time is purely determined by the 
viscosity temperature dependence. 

Now, let's look again at the balls of A lying still peacefully on the floor 
of the lamp through the derived estimation for the Frenkel' merging time. 
As long as the liquid B stays rather cold, A's viscosity remains low, and it's 
what keeps the balls from the "merging" rush. It is the same reason why, 
say, two touching wax balls do not couple into one at room temperature. 
Although, if one heats them hot enough, the viscosity of wax plummets and 
the balls merge "expeditiously". One more thing, playing an important role 
in the process, is the state of the surfaces of the potential partners, — the 
more rough and contaminated they are, the more difficult it is for the initial 
bridge to develop. 

The merging of the A droplets is absolutely critical for the lantern's 
working cycle to go on. This explains the presence of a special means, 
in order to facilitate this redistribution of A, from numerous drops into a 
uniform, melted mass. Sure enough, it is the mentioned already metal coil, 
wired along lantern's bottom perimeter. This coil is well warmed up by now, 
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and when approaching and touching it, the droplets receive that needed 
heating up, lowering their viscosity and, by doing so, "warming" greatly 
their desire to join back the prime body of the liquefied A- Soon enough, 
after all droplets finally disappear into the maternal mass, it ends up with 
one, unified liquid phase of A in the bottom of the lantern cylinder. And, 
because it is still continuously being heated, the liquid A can not remain 
motionless, of course. A new stage of the Lava-lamp life commences. We 
will call it "the phase of protuberances". 

Formed in the surface layers of .A, such protuberances languidly take 
off for their upward trek to the surface of B, pulled, of course, by the buoy
ancy force, and gradually assuming, as they go, more and more spherical 
shape (see Fig. 5 of the third page of cover). Having reached the upper lay
ers of B (where B, due to its low thermal conductivity, still remains cold), 
the protuberances cool down a little, nerveless, remaining liquid this time, 
and begin to drown slowly, landing back on the slightly popped up surface 
of A. Because of their still pretty high viscosity, it is quite difficult for them 
to dive into the A medium right away. So they bounce on its surface for 
while, drifting to the periphery, where the "surgical" metal coil opens up 
their surface and they end their live cycle exactly where they have started 
it. 

The bulb in the cylinder base keeps heating the system, creating new 
and new protuberances. As temperature is continuously rising, the rate of 
their birth goes up as well. When taking off from the A surface, protuber
ances leave behind them smaller droplets11, which kind of freeze perplexed 
in space, hesitating whether they really should go up into the unknown 
following their parent, or maybe just return to safety, into the original 
medium. In a time, a dozen of such "orphaned" liquid balls are hovering in 
the cylinder, some of which do finally dare to continue upwards, whereas 
the coy ones are descending back (Fig. 6 of the third cover page): a new 
stage of "collisions and calamities" is emerging then. And this turns out to 
be the longest and the most impressive phase of the lantern's activity. 

The spheres are colliding, veering in various directions, however manag
ing to avoid merging in the process. It seems like it would be advantageous, 
energetically, for the striking drops to couple (for the same reason we've 
mentioned just some paragraphs above). Yet, once again, they happen to 
run in the time problem. The duration of collision t, it's all they have, and 

hBy the way, these are the same Plateau balls that have been mentioned in Chapter 10. 
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if Tp turns to be much longer than t, than there is no enough time for the 
droplets to join and they, having collided, will just simply bounce apart. 
Let's try to give an estimate of the collision time. Most of the collisions 
in the lamp are glancing ones Fig. 11.3, during which the soft liquid balls 
slightly deform and slide along each other. The characteristic time of such 
an encounter must be about t ~ ro / v. Velocity of the balls flowing in B, 
v is just several centimeters per second, the ball radii are of the order of a 
couple centimeters too. It makes t ~ 1 s, and sure enough it is too short 
"unite", leaving then no other option except to continue roaming aloofly 
and unattached in the lamp cylinder, loitering at times by the bottom, then 
wandering though the bulk of B, colliding with each other, yet not merging. 
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) Fig. 11.3: Most of 
collisions of ,4-balls 
in the lamp are soft 
glancing touches. 

This "phase of collisions and calamities" can go on for hours. The man
ual usually recommends to switch the lantern off after 5-7 hours of oper
ating. But under certain circumstances, when temperature of the ambient 
air is sufficiently high (say, you happen to marvel at the magic gadget on 
a sultry Austin or squashing hot Tucson summer evenings), the described 
"collision" stage turns out to be not the last one. Finally, after a station
ary temperature distribution along the cylinder height has been attained 
(and the whole liquid B has warmed up), the densities of A and B become 
practically the same, and the entire A congregates into a single gargantuan 
ball. At first, the whopper is hanging in the bottom part, bouncing at times 
against the cylinder walls. Then, because of these "colder walls" contacts, 
it cools down a little, becomes a bit denser, and, consequently, sinks down 
to the floor. After touching the bottom though, the ball gains an extra 
portion of heat, its density drops again, and it returns to its previous po-
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sition, where it stays until it cools down again. The cycle starts all over. 
This, unmentioned in the lantern's instruction, phase we could name "the 
super-ball time" (see Fig. 8 on the third page of the cover). 

Finally, after we, along with our magic Lava-lamp, have gone through 
the numerous stages of its work, gaining some understanding of mechanism 
of the described processes, let's take a concluding look at these phenomena 
in a general, overall manner. The first question coming to mind is why 
do these successive, from many points repeating, events of the birth, life 
and death of the spheres occur at all? — It is clear, from all our previous 
discourse, that the driving force behind the processes is the temperature 
difference between the top and bottom ends of the lantern (in the ther-
modynamical terms, between the heat source and the heat sink). If one 
supposes that the flux of heat propagates in the system only because of 
the heat conduction by the B-liquid, the temperature of B will be simply 
changing gradually along the height, and nothing unusual, amusing would 
happen. The birth of spheres, on the other hand, as well as the ordinary 
convection, is a consequence of instabilities which sometimes develop in 
systems, where a thermal flow due to variation of temperature along the 
boundary occurs. The study of behavior and properties of these systems is 
the subject of rather new, though quite "volcanically" developing branch 
of physics called Synergetics. 





Chapter 12 

Waiting for the tea-kettle to boil 

A bright idea came into Alice's head. 
"Is that the reason so many tea-things are put out 
here?" — she asked. 
"Yes, that's it," — said the Hatter with a sigh: 
"it's always tea-time, and we've no time to wash the 
things between whiles." 

Lewis Carroll, Alice's Adventures in Wonderland. 

There are thick Eastern manuscripts as well as long detailed chapters in 
special books devoted entirely to the tea drinking ritual. Yet when taking 
another, unconventional, peek at the process, one surely finds in galore 
interesting and edifying physical phenomena, which are not described even 
in the most reverent culinary "oracles". 

To Umber up a little, let's perform the following experiment at first. 
We will take two identical tea-kettles, with the equal amount of cold water 
(same initial temperature in both), and put them on the burners or hot 
plates (whatever the stove has) of the same heating power. One of the 
subject kettles will be covered with the lid, and the other one will stay 
"bareheaded". In which will the water boil first? Any housewife (no offence 
to the intelligence of our housewives given) will give you the correct answer 
right away. If she wants to have hot water faster, she will put the lid on 
and reply that the water will boil first in the covered kettle. Well, not 
taking this statement for granted, let's check it as we are supposed to, — 
experimentally, and wait until the water does indeed start to boil, and have 
discussion on the resulting observation afterwards. 

In the meantime, while the two our tea-kettles are getting hot, we put 

101 
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one more, identical tea-kettle on a third burner. The volume of water and 
its initial temperature again are the same as for the two previous ones, as 
well as the power of the burner. Now, we aim to get water in this last tea
kettle boiling somehow faster than in the other two. How could we possibly 
help raising the water temperature in this kettle? A trivial way would be 
to stick an extra heating coil in it. Well, but let's say we do not have any 
available? Then let's recall that in order to increase water temperature in a 
vessel, it's sufficient just to add there some hotter water. Maybe it's what 
we need to speed up the process and reach the boiling point faster. It turns 
out — no. Not at all. On the contrary, it will rather slow it down. To 
prove this, let us assume that the original amount of water of mass mi at 
a temperature Ti, did not mix with the added water (m2 at T2) and did 
not exchange any heat with this new mass of water either. The amount of 
heat required for the original volume of water in the kettle to boil would be 
Qi = cmi (Tb — Ti) where c is the specific heat of water. But now, besides 
this energy, the mass m2 has to be heated to the same boiling temperature, 
so that the total amount of heat needed is: 

Qj = cmi (Tf, - Ti) + cmi (Tb - T2). 

Even if we pour boiling water straight into the tea-kettle, still the added 
water will cool down somewhat during the "trans-filling", lowering its tem
perature below TV Obviously our quite naive conjecture that the two por
tions of water in the same pot remain unmixed after the addition did not 
affect in any way the law of conservation of energy in the system, yet per
mitted us to handle the evaluation simpler and faster. 

By the time we've finally given up the idea of adding water into the third 
kettle, the first of our two "original" tea-kettles begins hissing. And what 
would be the physical mechanism behind this so familiar sibilant sound, 
and what is its characteristic frequency? Next, we shall try to answer these 
questions. 

As the first candidate to generate this whistling discord, one could sug
gest oscillations excited in the liquid when the "ripened" steam bubbles 
take off from the walls and bottom of the reservoir (tea-kettle in this case). 
These bubbles always start developing on all sorts of microcracks and other 
defects, ever present on any real surface. The typical size of such bubbles, 
before the water starts to boil, is about 1 mm (after that they can reach as 
much as 1 cm). To estimate the frequency of sound produced by simmering 
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liquid, we need to know how long it takes for the bubbles to release from 
the bottom. This time actually measures the length of the push the liquid 
experiences when every next bubble takes off, and, therefore, the period of 
vibrations they excite. Within our assumptions, the searched frequency is 
determined by the reciprocal of this time: v ~ r _ 1 . 

When the nascent bubbles are resting on the bottom, there are two 
forces acting upon thema: the Archimedean buoyancy force, FA = pwg H 
(here V& is the volume of the bubble and pw is the density of water) pushes it 
upward and the surface tension that keeps it attached to the surface, Fs = 
a I (where I is the border length of the contact area between the bubble and 
the surface). As the bubble grows (V& increases), the Archimedean force 
is rising too, and, at a certain moment, it exceeds the retaining force of 
surface tension. The bubble takes off, starting on its journey up, Fig. 12.1. 
Hence, the resulting force acting on the bubble during its "departure" stage, 
should be of the order of FA • Whereas, the acceleration of a bubble in liquid 
is defined, of course, not by its own negligible mass (consisting mostly 
of the mass of air trapped in it), but by the mass of liquid involved in 
the motion. For a spherical bubble this so-called associated mass, equals 
m* = |7rp,,,ro = \pw Vj, (r0 being the bubble's radius). 

Fig. 12.1: Bubbles 
formed on defects of 
the bottom are at 

first held in place by 
forces of surface 
tension. 

o 
o 

-o -Q-V y 
Thus, for the acceleration of the bubble during the initial stage, one 

aHere we disregard the tiny weight of the bubble. 
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finds: 

FA 0 a ~ —- = 2a. 
m* 

Now we can evaluate the bubble release time, considering (again, for 
simplicity sake) the motion to be uniformly accelerated. Our subject bubble 
will climb up to the height comparable to, say, its size within the time of 

~ 1(T2 s. (12.1) 

Then, the corresponding characteristic frequency of the generated at 
the bubble's take off sound should be equal to v\ ~ T^1 ~ 100 Hz. This 
seems like maybe an order of magnitude lessb than the sibilant tune one 
hears when a tea-kettle is being heated on a stove (long before though the 
water starts actually boiling)0. 

So it turns out that there must be another cause for the tea-kettle's 
hissing, when it's warming up. To find out this second reason, one would 
have to closely follow the bubble's fate after it leaves its parental surface. 
Having taken off from the hot wall (or bottom) where the vapor pressure in 
the bubble was around atmospheric (otherwise it couldn't expand enough 
to start making it upwards), our protagonist hurries up in the higher, and, 
naturally , still colder, layers of water. So, the saturated water vapor, 
filling the bubble, cools down too, causing the inside bubble pressure to 
drop and not be able any more to compensate the external pressure of 
liquid exerted on the poor bubble. As the result, the squashed bubble 
flops or gets squeezed into a tiny one (the latter happens if, besides water 
vapor, it had also a little bit of air inside), generating a sound pulse in the 
liquid, Fig. 12.2. This very process of massive "death or bad maiming" of 
numerous steam bubbles on their way to the water surface is indeed sensed 
by us as the hissing noise . And now, following our already established 
habit, we will try to estimate its frequency, of course. 

bR«quencies in the 100 Hz range are familiar from the humming noise of old grandfa
ther's radios.—A. A. 

cNote that the surface tension did not make it into the (12.1) indicating in a way that 
the bubbles produce sound not only when leaving the surface but during all their ac
celerated motion upwards. This lasts until the buoyancy force gets compensated by the 
proportional to velocity viscous friction. 

7 j r* 
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|_ 

F ig . 12 .2: Before the 
ac t i ve b o i l i n g s t a r t s 
co l lapses of hundreds 
of t i n y bubbles make 
the t e a - k e t t l e s ing . 

From the Newton's second law equation, for the mass m of water rushing 
into the bubble when it collapses, we can write: 

maT = Fp = SAP. 

Here S = 47T r2 is the area of the bubble's surface, Fp is the total pressure 
squeezing the bubble, A P is the pressure difference across the bubble's 
envelope and ar is the inward acceleration of the envelope. It's pretty clear 
that the mass involved in the process of "squeezing" should be of the same 
order as the product of water density times the bubble's volume: m ~ py,^. 
So, we could rearrange the Newton's equation in the following manner: 

pw r3 ar ~ r2 AP. 

Further, neglecting the fraction of pressure arising from the bubble's surface 
curvature, as well as the smidgen of air possibly ensnared inside the bubble, 
we will consider A P to be constant (more precisely, depending only on the 
temperature difference between the bottom and surface layers of water in 
our tea-kettle). Now, evaluating the acceleration ar as ar = r" ~ r0 / if 
where T-I is the "flop" time we are looking to for, we find that 

pJ-\~AP, 
T2 

which gives 
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Near T& = 100° C, the saturated water vapor pressure drops by about 
3-103 Pa per one degree Celsius of the falling temperature (see Table 12.1). 
Hence, we could assume A P ~ 103 Pa, and finally write for the searched 
time T-i ~ 1 0 - 3 s, leading to the noise frequency of v% ~ r-fi ~ 103 Hz. 
This answer is already much closer to the value perceived by our earsd. 

Table 12.1: TEMPERATURE DEPENDENCE OF PRESSURE OF SATURATED 

WATER VAPOR. 

Temperature, ° C 

Pressure, kPa 

96.18 
88.26 

99.1 
98.07 

99.6 
100 

99.9 
101 

100 
101.3 

101 
105 

110.8 
147 

One more fact supporting our conclusion that the proposed mechanism 
is indeed responsible for the "tea-kettle" noise is that, according to (12.2), 
its characteristic (high) frequency goes down with the temperature growing. 
Right before the boiling begins, the bubbles cease flopping even in the upper 
layers of water. Then the only remaining sound becomes that produced by 
the bubbles taking off from the bottom. The frequency of the "tune" drops 
noticeably when water in the kettle is about to start boiling. After it 
finally happens, the kettle's "voice" may change again though, especially 
if one opens the lid: the gurgling sound we hear is generated now by the 
bubbles rupturing right by the water surface. This pitch depends also on 
how the water level, as well as on the kettle's shapee. 

Thus, we have established that the kettle's noise before water in it 
starts boiling is related to hundreds of steam bubbles, produced on the 
hot bottom, departing to the surface, and then perishing in the upper, 
still not hot enough, layers of water. All these processes become especially 
visual if one is heating water in a glass pot with transparent walls. Let's 
not hurry though to congratulate ourselves that we were the first to sort 
things out about this interesting question of the "singing" boiling water. 
Long while before us, back in the eighteenth century, the Scottish physicist 

d According to Fig. 12.3 the temperature drop (and the corresponding pressure difference 
A P and frequency v) may be up to the order of magnitude higher. —A. A. 

eOne more argument in favor of the proposed mechanism is that bubbles in fizzy drinks 
don't make sound we have been talking about. The difference with the boiling water is 
that the carbon dioxide filled bubbles can not collapse. — A . A. 



Waiting for the tea-kettle to boil 107 

Joseph Blackf was studying the phenomenon and had established that the 
sound was produced by a duet consisted of the ascending to the surface 
steam bubbles and the vibration of the vessel's walls. 

Now comes the time for water in the first of our subject tea-kettles (the 
one covered with lid, remember?), the predicted favorite winner, to boil. 
The moment is quite "resolutely" announced by the stream of steam jetting 
out of the kettle's spout. And what could be the velocity of the stream, by 
the way? One can solve this, honestly not the most challenging, problem, 
noticing that during the steady boil, all the energy provided to the kettle, 
is being spent for vaporizing of water. Let's think that in this case the only 
way produced steam is escaping outside is through the spout. Suppose 
further that a mass A M of water is vaporized in time At, on the expense 
of the supplied to the system heat. Then, one could write the following 
balance equation: 

r AM = V At, 

where r is the specific heat of vaporization (heat per unit mass), and V is 
the power of the heater. During the same time At, the same mass AM is 
supposed to leave the kettle through its spout, otherwise produced vapor 
would accumulate under the lid. If the area of the outlet orifice (pretty much 
the perpendicular cross-section of the spout) equals s, the steam density is 
ps(Tb), and v is the velocity in question, then the following relation holds: 

AM = p8(Tb)svAt. 

From the above table, we pick ps(Tj) = 0.6 kg/m3 as the density of satu
rated water vapor at Tj = 373° C. If one doesn't happen to have a suitable 
table handy, one can use for this purpose the Clapeyron-Mendeleev's gas 

fJ. Black, (1728-1799), Scottish physicist and chemist; the first to point out the difference 
between the heat and temperature; introduced the idea of heat capacity. 
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lawE: 

P*(Tb) = P°V^° w 0 .6%/m 3 . (12.3) 

nib 

Thus, for the velocity of steam escaping the spout, one finds: 

VRTh 
i) = 

rP s (T 6 ) / z H 2 os 
After the required substitutions: V = 500W, s = 2 cm2, r = 2.26 1Q5 J/kg, 
Ps(Tb) = 106 Pa and R = 8.31 7/1° • mole, the searched velocity is v ~ 
l m / s . 

Now, finally, water goes on boiling in the second (open) tea-kettle. It has 
noticeably lagged behind the "capped victor". One should be very careful 
taking this one off from the stove, — if you just grab it by the handle, you 
can very easily scald yourself (we are sure, though, that our reader does 
understand that safety is first in any kind of experiment). Anyway, our 
next question is the safety (rather "unsafety") related one: what does scald 
worse — the steam or the boiling water? Adding to this question some 
required physical strictness, we could paraphrase it in the following, way: 
what does scald more badly - a certain mass of steam or the identical mass 
of boiling water. Well, for the answer we will have to do some estimations 
again. 

Suppose there was Vi = 11 of saturated, one hundred degree (Celsius, 
of course), steam under the lid of the tea-kettle. Imagine further that after 
the lid is opened, one tenth of this steam condenses on the "unlucky" hand. 
We know already that the density of water vapor at J& = 100° C equals 
0.6 kg/m3. Hence, the mass of the condensed on the hand water is going 
to be m„ w 0.06 g. The amount of heat produced during the condensation 
and subsequent cooling of the condensed water from 100° C down to the 
room temperature T0 « 20° C, then, will be AQ = rms + cmg(T6 — To). 
And, therefore, as c = 4.19 J/kg and r RJ c • 540° C, it takes about ten 
times more of the boiling water than the hot steam to get the same thermal 
gThe expression for gas density p can be obtained from the equation of state of the ideal 
gas P V = — RT, where P, T, and m are the pressure, temperature and mass of gas 
enclosed in the volume V respectively. This can be easily brought to the form 

_ m _ P fi 
P~ V ~ R~T' 

where fi is the molecular mass of the gas and R is the gas constant per mole. 
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effect! Besides, the affected by the scalding steam area (due to much higher 
mobility of the vapor molecules) is always significantly larger than that if a 
hbt water is poured on a surface. Thus, the answer to our question is that 
the steam would be unequivocally much more dangerous as the burning 
agent than the water of the same (boiling) temperature. 

However, performing all these dangerous evaluations, we have swerved 
quite a bit from our original test with the two tea-kettles. Why did it take 
water in the opened one so much longer to start boiling after all? Let's 
look at the phenomenon closer. The answer seems to be almost trivial: 
during the heating , the nimblest molecules of water (those with higher 
velocity) can, rather freely, escape from the open kettle, pilfering some 
energy from the water remaining inside and, by doing so, effectively cooling 
it (this process is nothing but evaporation). Hence the heater, in this 
case, is supposed to provide not only energy to warm water to the boiling 
temperature, yet also the heat required to evaporate some of the water. 
Thus, it's clear that it is going to take more energy (and, therefore, time, 
because the heater power is fixed) than just heating the water in the capped 
kettle, where those swift fugitives have no other options but to congregate 
under the lid, building up the saturated water vapor, and eventually go 
back to water, turning in the "stolen" energy surplus. 

Yet, there are two more effects occurring at the same time, although 
opposite to the above one. First, during the evaporation, the mass of 
water which needs to be warmed to Tb somewhat drops; secondly, in the 
open vessel, the pressure over water is atmospheric and, hence, the boiling 
process starts at exactly 100° C. On the other hand, in the covered kettle, 
if it's filled sp that the steam can't make it out through the spout, the 
pressure above the water surface, because of the intensive vaporizing, will 
rise. Note that now it's the sum of the partial pressure of a small amount 
of air under the lid as well as of the steam itself. With increasing external 
pressure the boiling temperature should rise too, for it is determined by 
the equality of the saturated vapor pressure inside the developing in liquid 
bubbles to the external pressure. So, which of these factors should we 
prefer, choosing as the decisive one? 

Each time when such an uncertainty comes, one should retreat to a 
precise calculation or, at least, evaluate the magnitudes of the involved 
effects. So, at first, let's estimate the amount of water which escapes from 
the open tea-kettle before it starts boiling. 
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Molecules in liquids strongly interact with each other. Yet, if in crys
tals the potential energy of molecules is much greater than their kinetic 
energy and in gases, on the contrary, the kinetic part dominates, in liq
uid the potential and kinetic energies are of the same order. So molecules 
in the liquid most of the time fluctuate around some "ascribed" to them 
equilibrium positions, yet once in a while managing to hop to a different 
neighboring equilibrium location. "Once in a while" just means far longer 
duration compared to the period of oscillations about equilibrium points. 
However, in our conventional time scale, such hops recur indeed quite fre
quently: in just the jiffy of one second, the "jittery" molecule of liquid can 
change its equilibrium position billions of times! 

However not every single molecule which happens to be wandering by 
the surface of the liquid, can actually escape from it. To finally free them
selves, such molecules ought to spend some energy performing a certain 
work against the interaction forces. One may say that the potential en
ergy of a molecule of water is less than that of a molecule of steam by the 
amount of heat of evaporation, normalized per single molecule. Then, if r 
is the specific heat of evaporation, the molar evaporation heat is ft r , and 
the "molecular" heat of evaporation will be U$ = /j,r / NA, NA being the 
Avogadro number. This work is performed on the expense of the kinetic 
energy of molecule's thermal motion Ek. The corresponding average value 
Ek « kT (k = 1.38- 10~23 J/1°K is the Boltzmannh constant) turns 
out to be far less than UQ. Nevertheless, according to the laws of molecular 
physics, there is always some number of molecules with kinetic energies high 
enough to overcome the attraction forces and flee away. The concentration 
of these extremely swift molecules is given by the following expression: 

» K 1 > ( / 0 = n o e " " , (12.4) 

where no is the total density of molecules, and e = 2.7182... is the base of 
natural logarithms. 

Now for a time being, we shall forget about the hops of molecules in 
liquid, and consider these high energy molecules as a gas. A molecule of 
such a gas can reach the surface from inside in a short instant At provided 
its velocity v is directed outwards and it has started less than from vAt 
away from the surface. For a surface area S these are the molecules from 

h L . Boltzmann, (1844-1906), Austrian physicist, one of the founders of classical statis
tical physics 
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the cylinder of the height v At with the base S. Let us assume for simplicity 
that ~ | of all the molecules in the cylinder, that is AN ~ | n S v At, move 
towards the surface. Taking the density of molecules with energies greater 
than U0 from equation (12.4) we obtain for the evaporation rate (that is 
the number of molecules that escape the liquid in unit time): 

AN nSvAt 
^At~ 6 At ' 

where we have taken the velocity v ~ y/Uo / mo- So the mass carried away 
from the liquid per unit time is equal to: 

Am AN [Uo~ _£L , -__, 
——~ m0 —;—~m 0 onoA/ — e " \ (12.5) 
At At V Wo 

It turns more useful to recalculate this mass normalizing it to the 1° K 
temperature increase, while the kettle is being heated. To do so, we will 
use the energy conservation law: our kettle, in a time At, receives from the 
burner the amount of heat AQ — V At (V is the burner's power), and , 
consequently, the water temperature rises by AT, entailing: 

:PAt = c M At, 

where M is the mass of water in the kettle (here we disregard the heat 
capacity of the kettle itself). After plugging At = cM AT /V into the 
equation for evaporation rate (12.5) we have: 

Am _ pcSM / r /xH 2o _ ^ % Q _ pcSMy/F -r
1p%°-

AT~ V VNAm0
e A ~ V e A 

As the tea-kettle is being heated, the temperature scans from the room 
to the boiling, 373° K, value. However, we conjecture at this point (and 
rightfully) that the majority of the mass is being lost while the temperature 
of water is already pretty high, close to its boiling value, so that we could 
put, say, T = 350° K as the average temperature into our exponential 
expression above. For the rest of the terms we assume: AT = Tf, - T0 = 
80°K, S ~ l ( T 3 m 2 , p ~ 10 3 %/m 3 , /xH2o = 0.018kg/mol, and c = 
4.19 • 103 J I kg. After putting all these values into the formula, we finally 
find: 

Am ocS ~- ' ' W J O 
-jf « ^ - ^e-^r- {Tb - T0) « 3 %. 
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Thus, while being warmed up to the boiling temperature, just a few 
percent of the total mass of water leaves actually the tea-kettle. The evap
oration of such a mass takes an extra energy from the heater, and, naturally, 
protracts the heating before it reaches the boiling point. To understand by 
how much, one could calculate and find out that the vaporization of this 
amount of water requires from the heater the amount of energy equivalent 
to the heating from room to boiling temperature of about one forth of the 
total mass of water in the tea-kettle. 

Now let's turn to the second (or maybe the first — we don't remember 
already), covered with the lid, kettle, and look closer at the effects slowing 
its reaching the boiling condition. The first of them (potential change of 
mass of water during the heating) should be dropped off right away, for, as 
we have just showed, the evaporation of about 3 % of water is energetically 
equivalent to the heating of about 25 % of water and, therefore, the heat 
required to bring these extra 3 % of water mass to the boil in the closed 
tea-kettle, could be disregarded. 

It turns out that the second of the effects (the increase of pressure over 
the water in the covered vessel) can not play any noticeable competitive 
role either. Indeed, if the tea-kettle is completely filled with water (steam 
can't escape from the spout), then, the additional (to the atmospheric) 
pressure obviously can not exceed the lid's weight divided by its area, for 
, otherwise, the lid would start to jounce releasing the steam. Assuming 
"mud — 0.3 kg and Sud ~ 102 cm2, we can limit this extra pressure by: 

A P < ^ « T ^ = 3 1 0 2 P a . 

And having checked once more in Table 12.1, one finds that such an increase 
shifts the boiling temperature by not more than just STi, ~ 0.5° C. Hence, 
to make the water boil, it would take an extra heating energy of 6Q = 
cMSTi,. Comparing this to r AM, we see that the inequality r AM ^> 
cMSTb holds with the safe ratio of at least as much as 30:1. The fact 
allowing us to conclude that the increase of boiling temperature of water 
in the fully filled tea-kettle covered with the lid can not seriously compete 
(regarded energywise) with the evaporation of water from the open water 
surface in the "bareheaded" vessel. 

Digressing a bit, we would like to mention here that the just described 
phenomenon of increasing pressure during the heating of liquid in a closed 
volume has been successfully employed in the design of a utensil, called the 
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"pressure cooker" (familiar maybe to those who still do real cooking, at 
least once in a while). Instead of the spout though, it has a safety relief 
valve, which opens only if the pressure inside goes over a certain limit, the 
rest of the time, such a vessel remains entirely sealed. As liquid inside gets 
vaporized and all the steam is kept in the cooker, the internal pressure rises 
to about 1.4 • 105 Pa, before the relief valve opens up, so that the boiling 
temperature (going back to our useful Table 12.1) moves up to T6* = 108° C. 
This allows to cook food much faster than in a regular pot. However, one 
should be extremely cautious while opening the pressure cooker after taking 
it off the stove, because when unsealed, the inside pressure drops and the 
liquid becomes significantly superheated. Therefore a certain mass 5m, such 
that rSm = cM (T6* — Tj), will instantly evaporate, and can cause a bad 
scalding. (In this situation, the liquid starts boiling explosively in the whole 
volume of the pot at once). 

By the way, at high elevations (additionally to the typical beautiful 
scenery), the atmospheric pressure is lower and it becomes quite an under
taking to cook, say, a piece of meat if water starts already boiling at 70° C 
(the ambient pressure at the elevation of Everest, for example, is about 
3.5 • 104 Pa). So the pressure cooker is usually a quite welcomed part of the 
climber's equipment. Because of the ability to reach an acceptable cooking 
temperatures, it saves the fuel as well. That is another weighty justification 
to have this massive utility in the backpack. 

But let's go back to our kettles, boiling now at full tilt, still on the stove. 
It's time to take them off. Take a notice that the one with the lid doesn't 
stop boiling right away, after having been taken from the stove: the steam 
continues to puff out for some time. What fraction of water does actually 
evaporate during this ("postheating") boil? 

To answer this one, we have to look at the chart in Fig. 12.3, representing 
the dependence of temperature of water on height while water is boiling (the 
heat, of course, is being supplied through the bottom). From the picture 
we see that the slim bottom layer of about AH — 0.5 cm thick is quite hot, 
with the temperature drop across it from !&<# = 110° C (Ti„t is the bottom 
temperature) to Tt = 100.5° C. The rest of the water stays, according to the 
graph, at about 100.5° C , yet undergoes a next step down of AT = 0.4° C, 
when approaching the free surface of the liquid (the graph corresponds to 
the water level in the kettle being H — 10 cm). Thus, for the amount of 
heat (extra to the equilibrium) stored in the vessel after its heating has 
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been stopped, we can write the following formula: 

AQ = cpSAH (Tbot~ T i ) +cPSHAT, 

where S is the kettle's bottom area (the kettle is considered to have a 
cylindrical shape). Sure enough, the tea-kettle's base is overheated some
how also, but because of the much higher specific heat of water, we can 
safely disregard the contribution of this effect. 
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The AQ amount of extra heat is then spent for evaporating the layer 
of liquid of thickness SH. The mass 5m of such a "slice" of water can be 
found from the equation of heat balance: 

rSm = pSSHr — cpS AH (3s^) + * AT 

consequently, giving us for 6H: 

AH (Tbot-Ti 5H_ 
H 

AH /Tbot-Tt\ + AT 2 10 - 3 

So it shows that after we take the kettle from the stove, it still looses, 
due to continuing boiling, about 0.2 % of its water content. 

The typical time it would take to boil out all water of, say, mass M = 
1 kg from a kettle provided with heat of V = 500 W, can be calculated as: 

I'M „ _ o 
—— « 5 • 103 s. 
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Therefore, the 0.2 % of its mass will be vaporized within about 10 s (suppos
ing that the evaporation rate does not change with respect to the stationary 
regime). 

And now, after all this discussion, there comes at last the time to serve 
our a bit too long awaited tea. By the way, in the Eastern countries, 
it's customary to drink tea using tiny tea bowls rather than tea cups or 
tea glasses. The former were first introduced most likely by the nomadic 
tribes of Asia — the small bowls are much easier to pack and they are far 
less fragile, which are obvious conveniences when one has an "itinerary" 
lifestyle. Besides, they have one more serious advantage over the ordinary 
glasses: the bowl shape, wider at the top, lets water cool down faster in the 
upper layers precluding a possible burning by the "scorching" liquid, while 
the tea in the lower part of the utensil remains still hot. 

However in Azerbaijan you may meet another type of the tea-drinking 
vessel, called Armudi Fig. 12.4. Here the widening top part helps the safe 
and pleasant cooling of the beverage whereas the spherical part below has 
the minimum surface and therefore keeps the tea hot for longer time. Thus 
you may enjoy sipping the full-flavored warm tea as the long oriental table-
talk goes on. 

I |_ 

Fig. 12.4: Azeri 

people prefer drinking 

tea from Armudi 

glasses (in English 

''Armudi'' means 

''Pear''. 
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The nifty porcelain tea-cups (not those whopper-mugs you are usually 
getting as safety awards from your company), which have been around since 
the centuries ago, most of the time have that widening at the top profile 
too. The less advanced from this point of view cylindrical glasses came into 
general use as the tea serving ware only in the nineteenth century, simply 
because of their lower cost; and traditionally were used by men, whereas 
the artful china tea cups were politely left for the best half of the human 
race. Over time though, this inferiority of the tea-glasses was fixed a little 
bit with the invention of glass-holders (often back then decorated with their 
owner's monograms). 

Could you think of what physical criteria material 
for glass-holders should satisfy? Would, say, alu
minum and silver be the good candidates? 



Chapter 13 

Craving microwaved mammoth 

I could not allow such a wonderful wildfowl to escape 
from me and I loaded my gun with an ordinary ramrod-
Then I shot it straight through all of the partridges as 
they always rise from the ground in a direct line before 
each other. The rod had been made so hot with the 
shot that the birds were completely roasted by the time 
I picked them up. 

E. Raspe, The adventures of Baron Munchausen. 

The day when the Neanderthal man tamed the fire opens era humana. 
Once and forever the MANKIND broke off with the ape ancestors. Fire 
opened the way to smelting metals, manufacturing cars, flying to the outer 
space but above all. . . it allowed to forget the taste of raw meat. A well-
browned beefsteak may symbolize civilization side by side with the model 
of atom. 

The civilization grew older and methods of food preparation changed. 
The camp-fire under a spitted mammotha was succeeded by the hearth, 
then came the time of wood-, coal- and gas-stoves, those were replaced by 
primuses, hotplates, electric stoves, grills, toasters, roasters... 

The interaction of fire with food changed in appearance but the physical 
entity of the process stayed almost untouched: the heat required for cooking 
was either transferred immediately (sometimes with the help of convection) 
or by means of infrared radiation. The first mechanism works, for example, 

aThink whether it is really possible to grill a whole mammoth? Read about the prepa
ration of elephant legs by african tribes in the book "The plant hunters" by Mayne 
Reid. 
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when making diet cutlets or "manty" b in the steamer, where food is cooked 
by hot steam rising from the water that boils below. Cooking soup uses 
two effects at once: direct heating at the bottom of the pot is followed 
by connective mixing of upper and lower layers of the liquid. In the mean 
time electric grill or charcoal barbecue are the examples of radiative heat 
transport. 

The evolution of the "fireplace" (let this denote the heat source) no
tably affected kitchen technology and cooking recipes. Possibilities of mak
ing new exquisite and delicious dishes arose. But justice calls us to confess 
that along with the enhancement of culinary arsenal .the development of 
the fireplace drove many dishes away from the table of the mankind. Some 
of those were forgotten, others yielded to the ersatz. Say, the true Pizza 
Napoletana can be baked in a few minutes almost of nothing but only in 
a special blazing wood-stove. Therefore old pizzerie are proud not only 
of their long father-to-son tradition but of the forno (this means "stove" 
in Italian). There you may watch the rite of pizza-making from the very 
take-off. Pizzaiolo dexterously sculptures your pizza, sets it with a wooden 
shovel into the stove, a moment, and here it comes, covered with sizzling 
hot cheese, mouth-wetting, calling to be immediately devoured with the 
best beerc. But watch out! If hunger catches you in front of some ultra
modern PIZ-Z-ZA place with a luxurious interior glittering of mirrors but 
lacking... Yes, right you are, lacking good old wood-stove, please, stand 
the temptation. Let nobody decoy you, it's safer to miss the lunch and 
escape a pretentious imitation served there. 

However we got too far from the initial subject. Let us return even if not 
right away to the kitchen then. . . to the lecture on history of metallurgy. 
There you will learn that furnaces at ironworks were changing almost as 
often as culinary appliances. In particular the Faraday'sd discovery of the 
law of electromagnetic induction opened doors to invention of induction 
melting. Here is a sketch of the idea: a piece of metal is placed into a 
strong rapidly changing magnetic field. As metals are good conductors the 

b "Manty" is the Uzbek speciality made of minced seasoned lamb wrapped in thin dough 
like Italian tortellini. 

cIn Naples pizza is indisputably served with beer. 
dM. Faraday, (1791-1867), English physicist and chemist. 
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Fig* 1 3 . 1 : A l f o n s o , t h e famous p i z z a i o l o of Maples 

( r i g h t ) , glides h i s f r i e n d Andre i Varlamov ( l e f t ) a 

lesson i s f ront of h i s forno. 

inductive electromotive force (EMF) that appears due to the variation. 

(# is the magnetic flux penetrating the specimen) gives rise to eddy ininc-
turn cmrmnts. or, otherwise, Fbcaritt cmrmwks* The word "eddy" indicates 
that the currents are closed because they follow closed lines of the induc
tion electric field. Induction currents generate the Joule6 heat like any 
other currents caused by applied electric field. If the EMF of induction is 
big enough (this requites big amplitude and high frequency of the magnetic 
field) the evolved heat will suffice for melting the metal. Induction melting 
is widely used in production of high-alloy steel, aerospace metallurgy etc. 

Wei, but even astronauts get hungry*.. Let us leave the orbital vacuum 
induction furnace and visit the kitchen module of the spaceship. Here we 
shall find a fireplace of the sort that drops out of the long sequence listed 

•J. P. Joule,(lS18-89), English physicist, specialist in tfaemio- and electrodynamics. 
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above. This oven rather resembles an induction melting facility than a 
conventional kitchen utensil. It heats the food with the help of ultrahigh 
frequency electromagnetic radiation. 

It was already in the sixties that astronauts who spent more and more 
time in orbit got fed up with tubed food. However, for conspicuous reasons, 
taking primus to space was absolutely out of question. First, the flame 
would consume the priceless oxigen and, second, the ruthless weightless
ness would have a frustrating effect on the earthly magic of old appetizing 
recipes. (Just try to imagine the cooking of weightless soup on primus. 
What other difficulties would you predict to space cooking?) 

The way out was found in using a kitchen analogue of induction furnace. 
Remember that almost all human food contains a noticeable amount of 
water. Salty waterf is an electrolyte and, even if not the best, a conductor. 
Hence changing magnetic field applied to a meat chop will induce in it the 
Fucault currents as if it was of metal. The energy of electromagnetic field 
will transform to Joule heat and, as a result, the slice will roast. 

A well known example of electromagnetic field changing both in time 
and in space is electromagnetic wave. But is hard to believe that whatever 
electromagnetic wave will be able to fry a steak. Bluntly irradiating it by 
flashlight one takes a risk to stay hungry. Therefore some criteria must be 
met. First of all, the field must be strong enough. For example, the field 
of a radar for watching aircraft would do. (Eyewitnesses tell that birds 
which by ill fate crossed the beam of a powerful radar fell dead not singed 
but rather boiled. Almost like in Baron Munchausen's tale.) Certainly for 
safety it would be nice to "confine" the field, localize and hold the wave. 

Waves may be "stored" in resonators. For sound waves this may be a 
real wooden box. A body of violin is a typical resonator. Standing sound 
waves can last in it comparatively long after having been excited by external 
source. Naturally this role is played by the bow stick and strings. 

Quite similarly it is possible to "store" electromagnetic field but the box 
must be metal. The length of the box must be equal to a whole number 
of halves of the confined wave8. Exciting (by means of some microradar) 
electromagnetic oscillations in the box turns it into a resonator with stand
ing electromagnetic wave. The nodes of the wave (these are the points 
where the amplitude is zero) are at the walls. Microwave oven is exactly 

fRemember the taste of bleeding finger... 

sThe same requirement is applied to sound resonators. —A. A. 
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such a resonator combined with a small microwave source. As the device 
is some tens centimeter (« lft) long we can readily estimate the maxi
mal wavelength of the radiation inside. The check of the estimate may be 
found on the back of the oven. You will find that the standard frequency 
is v = 2150 MHz, the corresponding wavelength being A = c/v « 14 cm. 

Let us continue exploring the microwave oven and make an experiment 
as it once has been performed by the author himself. Take a bulky cut 
of deep frozen meat, salt and pepper it, put onto a special dish (its time 
will come yet), place into the microwave and switch that on. At first sight 
nothing happens but to the muffled hum of the ventilator (the necessity of 
that will be explained later). But then you will notice through the glass 
door that the meat will gradually become brown looking absolutely ready 
in thirty minutes. Take it out and cut in halves. It is quite probable that 
you will find inside a portion not simply raw, but even frozen. What is the 
explanation? 

The simplest thing would be to blame a nonuniform field distribution 
in the oven. Indeed, the size of the compartment is about 30 cm and the 
wavelength is (A « 14 cm). As the resonator is longer than four half-
waves A/2 w 7 cm the field inside must have at least three nodes where its 
intensity turns to zero. Spatial positions of the nodes of the standing wave 
are stationary and our piece of meat could have had a bad luck. Still in 
modern microwave ovens the problem is solved by slow rotating the table 
with the dish. This averages the effect of high-frequency field over the 
volume of the food. So, why not to take a merry-go-round for a turntable, 
load it with freshly extracted from eternal congelation mammoth and tug 
into a suitable microwave oven? What if the taste and the splendid amount 
of the outcome are worth effort? 

Unfortunately an impassable obstacle thwarts the realization of the 
dream. It bears the name of skin effect. This is the well-known prop
erty of high frequency currents to localize near the surface of conductor. 
As long as the frequency of the electromagnetic wave in the oven is very 
high this effect may be really important. The field will get damped in the 
bulk and the power will be not enough for frying. 

In order to prove the last assumption let us dwell on skin effect. We shall 
try to estimate the effective depth of penetration of electromagnetic field 
and study its dependence on frequency and on properties of the conductor. 



122 Craving microwaved mammoth 

The questions can be easily replied by solving Maxwell1" partial differential 
equations of electromagnetic field. Nevertheless this may scare some small 
minority of our readers and we shall recourse to qualitative estimates. 

First, let us formulate the problem. Let an electromagnetic wave with 
frequency u) fall normally onto a flat surface of a conductor, Fig. 13.2. Inside 
the conductor the electric field of the wave drives electrons into motion. 
The currents lead to Joule losses and the wave dies out. It can be shown 
that the damping obeys the so common in nature (remember for example 
radioactive decay) exponential law: 

E(x)=E(0)e-x/5^. (13.2) 

Here e = 2 .71 . . . is the base of the natural logarithms; E(0) is the amplitude 
of the electric field at the surface of the conductor and E(x) is that at the 
depth x; S(u) is the effective depth of the field penetration; that is the 
depth S(u) where the field decreases e times. 

F ig . 13.2: Skin 
e f f e c t : damping of 
e lectromagnet ic wave 
in conducting medium. 

We shall find the value of S(CJ) with the help of the dimensional method. 
Clearly the penetration depth must depend on the frequency. Remember 
that direct current (u> = 0) flows through the full cross-section of con
ductor. So the skin effect is weak, 8 -> oo, at low frequencies and becomes 
pronounced at higher ones. It is quite natural to suppose that the frequency 

hJ . C. Maxwell, (1831-1879), Scottish physicist, specialist in statistical physics, electro-
and thermodynamics, optics etc. 
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dependence of penetration depth obeys a power law: 

8(u)) oc u/*, 

and expect a to be negative. 
It is none less obvious that the penetration depth must depend on con

ducting properties of the sample. Those are characterized by the resistivity 
p of the material or, just the same, by the conductivity a = 1 / p. The 
essence of skin effect is that the energy of electromagnetic wave is con
verted to heat. The rate of Joule losses in a unit volume is: 

E2 

p = j E = — = <T£ 2 , 
P 

where E is the strength of electric field and j is the current density at the 
point. (Try to derive this formula yourself. Remember that the local form 
of the Ohm1 law is: j — a E.) The more effective energy dissipation results 
into the faster damping. Thus the penetration depth must depend on the 
conductivity of the medium: 

8 oca*, 

and one may believe that 0 is negative like a is. 
Finally let us note that the equations of electromagnetism when written 

in the International System of Units (SI) contain the dimensional magnetic 
constant p® = 4n • 1 0 - 7 H/m, called the vacuum magnetic permeability. 
This constant enters into the expression for magnetic induction around 
electric current just like the vacuum dielectric permeability £n appears in 
the formula for electric field of point charge. Let us assume that the pene
tration depth is a combination solely of these three parameters^: 

5<xwaoflt%, (13.3) 

and find the exponents a, 0 and 7 by comparing the dimensions of the left 
and right sides of the equation. Write down the dimensions of all quantities 

"G. S. Ohm, (1787-1854), German physicist; works on electricity, acoustics, crystal 
optics. 

JThis assumption implies that magnetic field is produced only by real currents. Ne
glecting the electric component of the wave (the so-called displacement currents) is 
well justified for frequencies in question. Otherwise the dimensional constant eo would 
appear in the result. 
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in (13.3): 

[S\ = m, [u] = sec~i, [a] = Q'1 • m"1, [HQ] = H • m _ 1 . 

Note that as Henry is the unit of inductance the relation 

At 

makes possible to represent it as follows: 

H = V • sec/A = fl • sec, 

and 

[Ho] — Q • sec • m _ 1 . 

The two sides of the equation (13.3) must have the same dimension: 

m = (sec)'" {H • m)~0 (12 • sec • m" 1 ) 7 , 

or 

m1 = (ny-P • sec'-" • m ' 7 ^ . 

This is equivalent to the three equations: 

Solving those we find: a = /3 = 7 = —1/2. Substitution of these values 
converts the equation (13.3) into 

6 <x 

The dependence of the penetration depth on u and er confirms the pre
liminary physical analysis, since both a and /? are negative. The accurate 
computation based on the Maxwell equations gives the same expression up 
to the numerical factor \/2: 

V Mowa 
(13.4) 

Now we can estimate the penetration depth at the standard frequency 
v = w / 2ir = 2.15 • 109 Hz used in microwave cooking. Conductivity of bulk 
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meat is practically equal to that of muscle which, according to biophysical 
handbooks, is am » 2.5 Q~x • m _ 1 . It is interesting to compare it to the 
model conductor, copper, with ac « 6 • 107 Q~x • m _ 1 . The formula (13.4) 
gives for these values: 

<5TO RS 1 cm and 6C s=s 1 0 - 3 cm. 

The effect is rather strong for good conductors and leads to enhancement of 
resistance of wires at high frequencies. The analysis proves that alternating 
currents are concentrated in the layer of the thickness 6(u) near the surface. 
At high frequencies S is small and the effective cross-section of wire falls 
down. However even for such a bad conductor as meat the effect is quite 
noticeable. Our test (10 cm thick) beef cut turned out to be too large. The 
field strength and the released heat diminish many times in the center and 
thermal conductivity becomes the only source of heat. And turning back 
to the mammoth, here the skin effect shows up mockingly literally. At best 
only the thick hide of the giant would fry whereas the meat would remain 
untouched. 

Well, one can survive that. Just don't put into your oven too thick 
slices and meat will roast safely and thoroughly. A big but flat steak is 
not sensitive to skin effect. Maybe you will even invent some delightful 
applications of the skin effect. For example, try to fantasize sometime 
about preparing in a microwave such an exotic dessert as . . . ice cream in 
hot freshly baked pastry crustk. 

Like everything in the world the microwave oven has its drawbacks. On 
the one hand it opens prospectives of pioneer cooking dishes that nobody 
has ever heard of, it preserves vitamins and provides a means of making 
dietary products but on the other it is incapable to imitate a soft-boiled 
egg. Indeed, let us imagine (!) an egg placed in the oven. After the power 
has been switched on the Fucault currents emerge in the liquid contents. 

kThere is a mechanism that facilitates the task. As you know, electric current in water 
is a motion of ions. This means that the conductivity of ice <r_ where ions are fixed 
by crystal lattice is less than that <r+ of water. This increases the penetration depth, 
6- an 6+ y<T+ /<r_but reduces the Joule heat: p_ = <r_ E2 = p+<r~ /cr+. Hence the 
heat release in the frozen region must be suppressed with respect to the covering pastry. 
So if the ice cream is fluffy (air bubbles add to dielectricity) and well cooled the chances 
that it will bear up the baking are not so bad. 
The same mechanism worked in the frozen meat lump where it kept the inside icy and 

raw. The reduced power program "defrost" helps to preserve surface layers from getting 
ready too fast. —A. A. 
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The fast heating causes release of vapor which can not get out of the shell. 
The pressure grows precariously, one more second and.. . BLAST! The egg 
blows up. The whole compartment has gotten splashed with the antici
pated breakfast and you passionately disparage the lack of foresight while 
scrubbing it. 

Now, after the relatively harmless explosion, it's right the time to talk 
about safety. Remember that the maximum power of microwave ovens 
is rather high being about lkW. The power can be regulated but still 
there must always be something inside where the heat could be dissipated. 
Therefore it is strictly forbidden to operate an empty oven. Missing the 
object to act upon the high frequency field "starts searching" where it 
could dump the energy and turns the firepower against itself. The heat will 
be released in the emitting elements and destroy them. 

In order to illustrate what happens let us look for analogy. Suppose 
that we placed into our microwave a pretty seasoned chicken. The physics 
of frying process is reflected by the following equivalent scheme, Fig. 13.3. A 
source of alternating voltage with the electromotive force £ (that imitates 
the microwave generator) with the internal resistance Ri is closed by a 
parasite resistor Rp (in our case this role belongs to emitting elements and 
walls of the oven) and connected to some external load Rch (probably you 
have already guessed that ch stands for the chicken). No doubt engineers do 
their best in order to maximize Rp and minimize the losses. But although 
Rp » Ri it is impossible to make it infinite. Inasmuch as Rp and Rch 
are connected in parallel the net resistance is Rn = Rp • Rch/ (Rp + Rch) • 
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The current in the circuit is I = £ /(Rn + Ri) and the power spent by the 
source P = £ I is divided between the three resistances and converted to 
heat. The optimal working regime corresponds to Rch » Ri <C Rv and the 
heat released in the circuit is distributed as follows: 

p c2 pi r>. 
p°pt ~ p°pt ~ ° _ ° • popt ~ _ P , ' ^ R>-

here P 0 is the power consumed under the optimum conditions. Note that 
one half of the energy (up to 0.5 k W) is dissipated in the source itself. This 
explains why ventilator is the indispensable detail of microwave oven. 

Now, what happens if bad boys have replaced the true chicken by a 
plastic copy with Rch -* oo? (This is almost the same as leaving the oven 
empty.) The total energy consumption will substantially fall down and 
the power will be shared as follows (oo stands for the dielectric chicken, 
Rch = oo): 

Pr""£^L=2P°R^^p^pt and ^°«£« 4 i 5
P

o p t -
Note that the parasite heat production has increased four times and the 
greater part of it falls on the emitters. Hardly getting them fried is desir
able. 

Operating empty microwave oven is fatal for the emitting ele
ments. 

But a much more serious danger is concealed in choosing wrong utensils. 
Of course some prefer to bye special glass-ware "Pyrex" and use it. But 
we recommend to think over physical requirements to kitchenware, take an 
old earthen pot and save the money. The main demand is that the pot 
must be transparent for the microwave radiation. It must remain dielectric 
even at high frequencies. Electric and magnetic properties of the material 
can markedly depend on the frequency of electromagnetic field. So by far 
not every glass or faience serves the purpose. And not under any pretext 
neither metal pots and foil-wrapped foods nor even gold-rimmed china must 
be put into the oven. In the twinkling of an eye the sympathetic kitchen 
accessory will turn into its fire-spouting relative from the founding shop 
and wreak havoc in and outside. 

Let us turn to the equivalent scheme in Fig. 13.3 once again. Suppose 
that grandma stuffed a chicken with prunes and chestnuts, sprinkled it with 
ground cloves an cinnamon, then arranged all on the treasured cast iron pan 
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and put that into a microwave. Because of the pan the effective resistance 
of such a masterpiece is zero, Rch = 0, and it will short the current source. 
The current will bypass the parasite resistance and take the short-circuit 
value, I0 = £ / Ri. The frying pan will get no heat, P®h = 1$ Rch = 0 and 
power will dissipate only in the microwave source: 

P ° — _ — AP°Pt 

1 Rt ~~ l " 

You see that now the heat released in the electric part exceeds the standard 
value four times and reaches 2 P 0 « 2A;W !̂ No chance, good if the device 
alone will be fused. 

Metal in the chamber of microwave oven short-circuits the 
high-frequency generator. 

Nevertheless a lot of earthen pots and ceramic plates will do. To make 
sure whether a utensil fits microwave cooking you may put it into the 
chamber along with a glass of water (what for?) and turn the switch on. If 
two minutes later the object of testing remained cool leave your worries, it 
had passed the exam. 

Try to estimate the depth of penetration into brain 
of the radio waves emitted by a cellular phone (u = 
900 MHz). 



Chapter 14 

The water mike 

About one invention of Alexander Bell 

These days, everybody knows what the microphone is. Right? We still quite 
frequently see it on TV: those nifty pin-looking things intricately woven in 
the anchormen's lapels, or the rather old-fashioned, a ball or a rod-with-
handle type, reporters stick into people's faces in feverish anticipation of a 
day-making news; radio-interviewers often ask their guests on the program 
to speak directly into their microphone hinting to us the presence of the 
latter; the movie makers, no matter how sophisticated and outlandish their 
sound effects are contrived to be, end up registering them with some kind 
of a microphone. One can easily buy a decent mike in any "Radio Shack" 
or "Best Buy" store and use it with her tape or CD recorder, computer 
or telephone. The design of the gadget is described in most of the today's 
high school physical textbooks. However, we can assure our revered reader 
that there are only a few who are aware of the existence of the so called 
water microphone. Don't get surprised. Indeed it turns out that one can 
rather efficiently amplify different sounds with the help of a simple water 
streamlet. The device employing such a principle of sound amplification was 
invented by the American engineer Alexander Bell, who is mostly known 
as one of the inventors of another gadget we can't imagine our daily life 
without — the telephone*. 

But at first, let's pay attention to that "water stream" amplifier thing. 

aAlexander G. Bell, (1847-1922), Scottish-born American inventor. The first public 
demonstration of the speech transmission using his electrical apparatus took place in 
1876. 
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If there is a hole, say a little round orifice, drilled in the bottom of 
a reservoir with water, one can notice that the stream flowing downwards 
through the hole consists actually of two, differing in their properties, parts. 
The upper one is transparent and steady looking as if made of glass; yet as 
it goes further from the outtake, the stream becomes thinner and thinner 
and finally at the point of the minimal cross-section, it turns into the second 
part, which is rather opaque and jittery. At the first glance, it still looks 
continuous, without interruptions, like the upper region. However, it turns 
possible at times to swiftly pass one's finger across this part of the stream 
without even wetting it. The French physicist Felix Savartb after having 
meticulously investigated properties of liquid streams, arrived at the con
clusion that at the narrowest point of the stream, it breaks its continuity 
and splits into series of separate droplets. Today, over century later after 
the discovery, one can easily prove this by taking photographs of the trickle 
with flash, or by looking at the stream in stroboscopic lighting Fig. 14.1; in 
those old times, however, researchers had to study the trickles in the dark, 
observing them with light from electrical spark. 

Look at the momentarily image of the lower portion of the stream, 
Fig. 14.1. It's composed of successive, alternatively bigger and smaller, 
droplets. As the picture clearly shows, the bigger ones are actually oscillat
ing, gradually changing their shape from a flattened, stretched horizontally 
ellipsoid (droplets 1 and 2 in the picture), to round balls (3), then to the 
ellipsoid again (4, 5, 6), yet now squeezed and stretched vertically, and then 
back to sphere (7), etc., etc. Each droplet, pulsing rapidly in its free fallc, 
produces different images in one's eye at different instants. This causes 
that perception of the lower part of the stream as kind of misty, widening 
in the regions where the droplet-ellipsoids are stretched latitudinally, and 
inversely, — narrowing where they are elongated vertically. 

b F . Savart, (1791-1841), French physicist; works in acoustics, electromagnetism and 
optics. 

c The frequency of pulsations can be estimated similarly to that of air bubbles in liquid, 
chapter 9, "The chiming and silent goblets": 

v-o-Vlp-^r-3'2. 

Putt ing ff = 0.07 N/m , p = 103 kg/m3, r = 3 • 1 0 _ 3 r o , one finds that v ss 50 Hz. 
Worth noting here is that the "shooting rate" of a typical movie camera, is 24 pictures 
per second. It happens to be already enough for the human eye to take the film for 
continuous motion. 
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Fig. 14.1: Sequence of 

alternating big and 

small droplets after 

the splitting of water 

stream. 
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Another interesting finding of the French scientist was that there is a 
strong effect of the surrounding sounds on the upper transparent part of 
the water jet: if a sound of a certain pitch (meaning frequency) is excited 
nearby, the transparent region of the stream turns instantly opaque. Savart 
gave it the following explanation. The droplets, in which the stream finally 
breaks down in the bottom part, start developing actually from the very 
beginning of the fall, right by the outlet orifice. At first they are outlined 
just by sort of circular notches that become more and more prominent as 
the liquid falls, until the point of the stream where they split completely. 
These notches are so close following each other, that they make a slight 
sound. Thus a music tone, in unison with this "natural" pitch, will make 
the continuous stream of liquid break into separate droplets earlier turning 
the transparent flow bleary. 

The English physicist John Tyndalld, repeated later the F. Savart's 

d J . Tyndall, (1820-1893), English physicist, specialized in optics, acoustics and mag-
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experiments in his laboratory. He had managed to produce a water stream, 
transparent and uninterrupted, of about 90 feet long. And then, by using 
the sound of appropriate tone and volume from one of the pipes of an organ, 
he was able to break this stream into countless separate drops, transforming 
it by doing so into a misty unsteady trickle. In one of his articles, he 
related his observation of the water stream falling into a basin. He observed 
that of the water stream falling into a basin sounds like that when the 
falling stream crossed the surface above the point of transition from the 
transparent to opaque part at moderate pressure, then the stream entered 
the liquid silently; but when it crossed the surface below the rupture point, 
a murmuring started and one saw numerous bubbles formed. In the former 
case, not only a serious sputtering did not take place, but the liquid rater 
piled up around the basis of the stream in the basin where the direction of 
motion of the liquid was actually reversed. 

The described above features of water streams were used by A. Bell in 
his design of the water mike, depicted in Fig. 14.2. It consisted of a metal 
tube and a branch pipe with a funnel soldered on its side; the bottom of 
the tube was mounted on a massive support, whereas its top was covered 
with a membrane-like rubber piece, fastened to the tube by a lace. As 
we know already from the Tyndall's experiments, the lower part of the 
water stream, split into separate droplets, makes a murmuring noise as it 
reaches the water in the basin. On the other hand, when the upper, still 
continuous, portion of the stream enters the liquid in the reservoir, the flow 
remains soundless. One can perform a similar demonstration with a piece 
of cardboard, placed across a stream of water. As one pulls gradually the 
cardboard sheet up, the drumming generated by hitting droplets becomes 
lighter and lighter and, after the "transition point" is passed, the noise 
ceases at all. 

The membrane in Bell's microphone plays exactly the same role as the 
cardboard piece in the preceding example. Yet now, because of the res
onator (tube) and the side pipe with the trumpet, any slightest tap of 
droplet is amplified and echoed much louder. Thus, the tiny droplets when 
hitting the rubber membrane will make the rapping worth that of a hammer 
against an anvil. 

One could easily use this apparatus to illustrate the sensitivity of water 
stream to different musical tones, the fact described by Savart and Tyn-

netism. 
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dall. That is, if we touch by vibrating tuning fork the outlet of a faucet 
from which a slim stream of water runs, Fig. 14.2, the flow will momen
tarily break into drops which "commence" their rather earsplitting chorus. 
This amplification of the originally pretty weak sound at the expense of 
the energy of falling stream does indeed constitute the physical principle of 
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the water microphone. If one substitutes the tuning fork with, say, a wrist 
watch, it will make its ticking audible to the entire audience in the room. 
One of renowned popularizers of science in the end of nineteenth century, 
claimed that he had tried to transmit the sound his voice by connecting 
a funnel to a glass tube from which water was running. And, although 
the water stream in his utensil had presumably started "talking", but in 
so horrifying indiscernible roaring voice, that according to the legend the 
spectators just had scooted awaye. While reading these lines, the authors 
feel that it is quite a blessing that the main Bell's invention, the telephone 
with the electrical mike in its receiver, happened to be free of such a dis
advantage. 

Returning to the chapter 10, "The bubble and the 
droplet", try to think why droplets in the lower 
part of the stream are pulsing periodically? Are 
the small ones throbbing too? A 

eSee footnote on page 70. 



Chapter 15 

How the waves transmit information 

Recently, we have grown so accustomed to the television, radio, cellular 
phones and Internet, that we are not any more a tiny bit surprised by the 
fact that we can so easily receive the needed information from pretty much 
any corner of the world. Yet it was not always like that (actually not even 
close) and not a very long time ago: 

It's a Russian book after all so we may just as well use an example from 
Russian history. In order to send a message to St. Petersburg about the 
coronation ceremony of the queen Elizabeth which took place in Moscow 
in 1741, all way along the road connecting these two cities, were mustered 
and aligned in a kind of human chain a couple of thousands of soldiers with 
signal flags in their hands. When the crown was put on the head of the 
new empress, the first of the soldiers waved his flag, so did the second when 
he had seen his neighbor signaling, then the third, the forth and so on. So 
the news about crowning event had made its way to the Northern Russian 
Capital, where a fired cannon notified the crowds of anticipating subjects. 

Now, let's ask ourselves a legitimate question: what was actually "mov
ing" along this peculiar chain? Although each soldier remained in the 
original place, yet at certain moment he changed his state, raising the flag. 
And this change of state was exactly the thing which moved along the 
chain. In situations of this sort physicists say that a wave was running (or 
propagating) along it. 

There is a great variety of different kinds of waves, depending on what 
actual physical property does vary when they propagate. For the sound 
(acoustical) waves, the density of matter they run through fluctuates, whereas, 
for instance, in the electromagnetic waves (light, radio, television, etc.), the 
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intensity of electric and magnetic fields are oscillating. There are temper
ature waves, waves of concentration in chemical reactions, epidemic waves 
and so forth and so on. In a poetic word, one could say that waves penetrate 
the entire edifice of the contemporary science. 

The simplest possible type of waves are the monochromatic ones, when 
states change at each point according to the simple harmonic law, with 
certain constant frequency, (the sine or cosine law). The monochromatic 
sound waves are what we call the sound tones, or pitches. One can excite 
such waves using, for example, the tuning fork. The monochromatic light 
waves are generated by "their majesty" lasers. With a simple stick, while 
dipping it periodically up and down in water, one can make pretty close to 
being monochromatic ripples. The similar waves could be produced in our 
live chain as well. 

Imagine that each grenadier not just simply raises his flag, but rather 
starts continuously and periodically waving it from side to side; and each 
next soldier follows the one before him, yet with a certain fixed delay or 
phase shift. A wave takes off running along the chain. We bet, our dear 
reader has seen something like that at a stadium during competitions, when 
the ardent (or just simply bored) spectators start making what is called 
"live wave". 

These monochromatic events are quite pleasing to the eye, yet can they 
actually transmit information? —- Obviously, no. Periodic in time os
cillations do not tell us anything new, so no information is transmitted. 
Whereas, with the single toss of hand the diligent servicemen did manage 
to communicate to St. Petersburg (more than 600 km away from Moscow) 
the important news. What is the difference between these two kinds of 
waves? If we take an instant pictures of the motion for both situations, we 
will see that in the first case all soldiers are involved in the motion, whereas 
in the second — only one of them. In other words, when a signal is being 
transmitted, the wave (whatever kind it was) at each moment is localized 
in space. One could imagine two, or three, or even several near standing 
participants raise their hands at the same time. In such a case, the length 
of conveyed signal would increase. Having been able to generated signals of 
different length, one could send not only message about a single event (such 
as the coronation having been accomplished, for example) but, in principle, 
any kind of information. Take, for instance, the famous Morse code (which 
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was patented much later by the way, in 1854)a. 
Besides of regiments of grenadiers, there are, of course, other information-

transmitting signals: light, sound, electric current, etc. It's interesting to 
note that any signal can be presented as a sum of the monochromatic waves 
with different frequencies. This possibility is ensured by the so-called super
position principle, stating that the oscillations of overlapping (interfering) 
waves at each point of a medium, should be just simply summed up. And, 
therefore, depending on the phase shift, oscillations can either amplify each 
other (for example, two identical waves with no phase shift will result in 
the oscillation of doubled amplitude, Fig. 15.1, a) or extenuate each other 
(again: two identical waves being out of phase will cancel each other com
pletely, Fig. 15.1, b). It turns out also, that one can opt (or tune) the 
amplitudes and frequencies of combined monochromatic waves in such a 
manner that they will nullify each other in the entire space, except for just 
a certain region where, conversely, they will amplify each other. 

Fig. 15.1: 
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The result of summation of a large number N of waves with identical 
amplitude AQ, and frequencies lying within a small interval 2 Aw around 
the basic frequency CJO is shown in Fig. 15.2. It is like an instant photograph 
of wave, showing variation of a fluctuating quantity A in different points 
of space at a fixed moment of time. There is a central maximum with 
N AQ amplitude, and also numerous secondary peaks, though with quickly 
waning amplitudes, indicating that, indeed, the overlapping waves mostly 
extenuate themselves, having been noticeably amplified only in the vicinity 
of the central maximum. 

aSurprisingly, but the marine semaphore system where various positions of the two, 
red and yellow, flags meant different letters and figures appeared much later, in 1880. 
—A. A. 
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Fig . 15.2: Big number 
of monochromatic waves 
can add up t o form a 
shor t p u l s e . 

Another worth noticing thing about the superposition is that the central 
peak does not stand still, yet is moving with the wave's propagation speed. 
If the monochromatic component waves all move with the same velocity 
c (like in the case of electromagnetic waves in vacuum, for instance), the 
central maximum also moves with the same velocity c, keeping its constant 
width AL — ^ j . Hence, the time length of the running signal will be equal 
to At = & . 

Now one could easily write a simple yet amazing and quite fundamental, 
as it turns out, relation: 

Aw • At ~ 1%. 

So, the signal length and the width of the range where the frequencies of 
its components lie, are inversely proportional to each other. Qualitatively, 
such a relationship seems quite natural: if there is a segment of sinusoid, 
corresponding to a signal of rather long duration (At is large), then it 
must be an almost monochromatic wave and Aw is small. However, if a 
short signal is required, it should be combined of many waves with different 
frequencies. Everyone, we believe, noticed the glitches and noises generated 
in the radio for pretty much all bands, when a lightning strikes nearby. 

Thus, each signal can be made of a set of monochromatic waves, or, just 
the same, each signal can be decomposed into such waves. The amplitude 
versus frequency dependence for monochromatic waves, composing a signal, 
is called the signal spectrumh. In the presented situation, for example, it will 
be a rectangle of altitude A0 and width 2 Aw, depicted in Fig. 15.3. This, 

bAlthough physicists sometimes mean by spectrum just the set of frequencies of 
monochromatic waves, making a signal, we stick to the more particular definition that 
takes into account the waves' amplitudes as well. 
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of course, is a trivial spectrum; signal spectra, just like signals themselves, 
can have various, most peculiar at times shapes. 

F ig . 15 .3 : The 
spectrum of the pulse 
depicted in F ig . 15.2 . 
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When we pronounce sounds, for example, we make the air vibrate in 
a certain way, so these vibrations propagate as sound signals of certain 
shape. Their spectra strongly vary depending on whether we utter vowels 
or consonants. The vowels have spectra with two distinct characteristic 
peaks at certain frequencies (they are called formants). The spectra of 
consonants, on the other hand, are more "smeared", spread over the whole 
audible sound frequency range: Fig. 15.4 represents the spectrum of the 
letter S sound. There has been developed an entire method called harmonic 
analysis allowing to find spectra of registered signals, as well as restore 
signals from their spectra. 

; 

Fig . 15.4: Spectrum of 
the consonant S sound. 
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Peculiar though it may sound, the solid bodies are capable of "yelling" 
too. The thermal motion makes atoms in the crystal lattice oscillate, gen
erating, thereby, elastic waves propagating inside the crystal. These oscil
lations, are sound waves too. Their spectral maximum, however, lies in 
the area of extremely high frequencies — at the absolute temperature of 
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about 5° K it stays around 1012 —1013 Hz. In the audible frequency range, 
though, the amplitude of these oscillations is negligible; so that in order 
to hear "what the solids are talking about", one must use some special 
devices. And by "listening" to this "chatting" (studying the sound sig
nal spectra, actually), researchers have already discovered plenty of very 
important "secrets" hidden in the solid-state. 

But what kind of signals are used in practice to transmit information? 
For short distances sound signals work just fine, and for a long while, al
ready, as far as the human history goes. The limitation though is that 
this type of waves tends to quickly dissipate. Yet, if one amplifies them 
at certain intervals (re-transmits them), sending them along, such signals 
may travel quite a space. In Africa, for example, until recently, people were 
sending messages using the tam-tams, "drumming" a piece of information 
from one village to the next (just sort of what the Russian soldiers had 
done with their flags). 

In the contemporary world, however, most of the signals are transmit
ted in the form of electromagnetic waves, which can cover much longer 
distances, before dying out. One, for example, can make an electromag
netic wave carry sound signals. In order to do that, the frequency of this 
electromagnetic wave (called the carrier wave) is kept constant, whereas its 
amplitude is varied (modulated) in accordance with the sound oscillation to 
be transmitted, Fig. 15.5. This way a signal containing the needed informa
tion is generated. Then, at the receiving end, the signal is "deciphered",— 
the envelope corresponding to the modulating sound signal is extracted. 
Such a sending-receiving method is called, therefore, amplitude modulation 
or AM. It's been employed in galore, for instance, in radio and television 
broadcasting0. 

There arises a next question though: how much information per unit 
time can one actually transmit, with the help of waves? To sort this one 
out, let's look at the following situation. It's known that any number can 

cOf course, after modulation, the electromagnetic wave remains no longer monochro
matic. For example, in the case of simple amplitude modulation of the carrier wave of, 
say, frequency wo and amplitude A(t) = Ao (1 + a sinQt), in Fig. 15.5: 

x(t) = A(t) sin wo t = Ao sin wo H——-[cos(wo — fi) t — cos(wo + tyt] 

You see that the spectrum even of this simplest modulation consists already of three 
different frequencies: wo — H, wo and wo + fJ. 
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Fig . 15 .5 : Amplitude 
of amplitude-modulated 
c a r r i e r wave va r i e s in 
accordance with t he 
t r ansmi t t ed 
low-frequency s i g n a l . 

be presented in the binary notation, as a sequence of ones and zeros. In the 
similar way, any information can be written encoded into a row of succes
sive pulses and pauses of certain duration. The signals can be transmitted 
by amplitude modulated waves, for instance, Fig. 15.6. The higher the 
speed of information transmission is wanted, the shorter these signals must 
be. Yet for reliably transporting the information the length of the signal 
shouldn't be shorter than the period of the carrier sinusoidal wave. This 
gives us right away the categorical limit on the maximum rate of infor
mation transmission. When one wants to raise the speed, one necessarily 
needs to increase the carrying frequency. Here, indeed, once again tells the 
considered relation for the time length of a signal: At « ^ , where Au 
becomes comparable to u>o-
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For example, to broadcast a musical program, it is sufficient to use 
electromagnetic waves with frequencies of around several hundred kilohertz 
(1kHz = 103 Hz). The human ear is capable of sensing sound frequen
cies up to approximately 20 kHz, and, hence, the frequencies composing 
the signals, in this case, will be at least an order of magnitude less than 
that of the carrier wave. Yet, for transmitting television programs, this 
frequency range doesn't work already. The images on the TV screen are 
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generated 25 times per second, and they, in turn, consist of tens of thou
sands of separate dots (pixels). So the needed modulation frequency is 
about 107 Hz and the corresponding carrying wave should have frequency 
of several tens-hundreds megahertz (1MHz = 106 Hz). That's why in 
the TV technology, engineers had to utilize the very-high (VHF) and ultra
high (UHF) frequency bandsd. Consequently, the very-short radio waves, 
with wave length of the order of one meter, are employed even though such 
waves can propagate only over rather limited (basically, within the direct 
visibility) distances6. 

An even better candidate for the fast information transmission would be 
the ordinary light, having its frequency in the area of 1015 Hz, which would 
allow to boost the transmission speed by several tens of times. Although the 
idea is rather old (Alexander Bellf actually was the first who applied light 
signals for sending sound messages back in 1880), its technological feasibility 
has arrived only recently. The success added up of the development of 
the high quality sources of monochromatic light — lasers, coupled with 
the fiber-optical light guides, capable of transmitting light with extremely 
low propagation losses, as well as all grandeur of the modern electronics, 
allowing efficient coding-decoding of these light signals. 

Now we can with all certainty state that the age of "copper wires" is 
fading away and is being substituted by the coming epoch of ultra fast 
information transmission networks based on the fiber-optics technology. 

d T h e terms VHF and UHF refer to the frequency {v) bands 30 - 300 MHz and 300 -
3000 Mhz respectively. Sometimes the both ranges are united into the single very-short 
wave band. The corresponding wave lengths are given by the usual formula A = ^ , 
where c = 3 • 108 m/s is the speed of electromagnetic waves in vacuum. This gives 
~ I cm — 10 m for lengths of very-short waves. Actually in this bands the frequency 
modulation (FM) is used rather than AM. — A . A. 

"Interesting enough, that the first television sets (with mechanical field scanning), made 
back in the twenties of XX century, worked in the medium wave (MW) band. The 
quality, due to the discussed problems, was very poor and the images were almost 
indiscernible. That had made researchers and engineers switch to very-short waves and 
develop the electronic field scanning techniques. However, this MW television had its 
own advantage — because of the longer (compared to the very-short waves) propagating 
range, programs from Moscow, for example, could reach, say, Berlin without any TV 
satellites or retranslating stations. 

fWhom you already know from Chapter 14. 



Chapter 16 

Why the electric power lines are 
droning 

What is the Tacoma Narrows Bridge? The Tacoma Nar
rows Bridge was built in 1940. After Months of swaying 
up, down and side to side the Bridge collapsed. Taking 
with it the life of a poor dog (Tubby). 

Mr. H's world O'Physics. 

Long times ago, the Ancient Greeks had noticed that tightly drawn 
string began sometimes to sound melodically in the wind, like if it was 
singing. Perhaps, back then people already knew the Aeolian harp, named 
so after Aeolus, the God of Winds in the Greek mythology. It is made up 
of a frame (or an open box) with several strings stretched across; it is put, 
then, in a place where the wind could pass through it. Even a single string 
in such an instrument can generate quite a spectrum of different tones. 
Something of the same nature occurs, although with far more limited tune 
variety, when the wind swings the cables of telegraph lines. 

The puzzle of this phenomenon had for long bewildered scientific pundits 
of the past, until, in the end of seventeenth century, Sir Isaac Newton had 
applied his, back then newly developed, analytical method to problems of 
what we would call today fluid dynamics. 

According to the law, first stated by the great Englishman, the resis
tance force acting on a body moving in liquid or gas is proportional to the 
square of the velocity v. 

F = Kpv2S. 

Here S is the area of the perpendicular to the direction of motion cross-
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section of the body, p is the density of liquid (or gas), and K is just a 
proportionality coefficient. 

Later though, it turned out that the formula does not apply univer
sally. When the speed of the body is low compared to thermal velocities 
of molecules of the medium, the above relation starts faltering. We have 
discussed already in Chapter 11 that for relatively slow moving bodies the 
resistance force becomes linearly proportional to the speed (Stokes' law). 
This situation occurs, for example, when tiny droplets move in a rain cloud, 
or residue flakes precipitate onto the bottom of a glass, or the drops of sub
stance A are roaming restlessly inside the magic lamp (see the same Chap
ter 11). However, in the modern world with its jet velocities the Newton's 
law for resistance force is much more common. 

Either way, couldn't we find a satisfactory explanation to the phenom
ena of droning power lines or the tunes of the Aeolian harp just knowing 
these basic relations for the resistance? The answer is — no. Unfortunately, 
it is not at all that simple. Really, if the resistance force would remain the 
same (or was increasing with the speed rising), the string would be drawn 
by the breeze more and more, producing no oscillations at all. 

So, where is the trick here? Well, it turns out that in order to understand 
the nature of the string vibration in this case, we can not get away with just 
a couple of rather general, not touching upon the flow mechanism, ideas. 
We ought to delve a bit deeper and discuss in more detail how does liquid 
actually flow around a body resting in it. (This is simpler than considering 
a body moving in the static liquid but does not affect the result, of course). 

The case when the current is relatively slow is depicted in Fig. 16.1. The 
liquid flow lines are passing smoothly around and behind a cylinder (the 
picture shows the cross section). The flow of this kind is called laminar, 
and the resistance force arises from the internal friction (viscosity) of the 
liquid and indeed is proportional to velocity of the liquid (again — our 
reference frame is tied to the body). Both velocity and friction force at any 
point in such a flow are time-independent (the flow is stationary), and this 
rather insipid situation is of no interest to our Aeolian problem. 

Now let's look at Fig. 16.2. The flow velocity has increased and new 
whirling characters have appeared — the eddies or vortices, if you wish. 
Friction is not the definitive cause any more. Now it depends less and less 
on changes of momentum on microscopic scale, yet scales comparable to 
the size of the body itself start dominating. The resistance force becomes 
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Fig . 1 6 . 1 : Lines of 
slow laminar flow 
around long 
c y l i n d r i c a l wi re . 

proportional to the second power of velocity, v2 

Fig . 16.2: At higher 
flow v e l o c i t i e s 
v o r t i c e s appear behind 
the wi re . 

Finally, see Fig. 16.3, the flow velocity has grown up even more, and 
the eddies are now aligned into neat well-ordered chains. And here indeed 
lies the answer to the riddle of string's vibrations! The thing is that these 
nicely structured tails of vortices break loose recurrently from the surface of 
the string and thereby do excite the string oscillations, like plucking fingers 
would do. 

This, quite peculiar at first glance, arrangement of vortices tailing be-
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hind the body, had been first discovered and studied experimentally in the 
beginning of twentieth century. It found theoretical explanation in works 
of the Hungarian scientist, Theodore von Karmana. Now these periodic 
vortex wakes are known as the Karman trails (or even the Karman Vortex 
Street). 

As velocity continues to increase even further, the vortices do not have 
enough time any more to spread over a large area of the liquid. The 
"swirling" region narrows, the eddies start mixing with each other and the 
flow becomes chaotic, irregular (turbulent flow). The latest experiments, 
though, show that for extremely high velocities there develops another kind 
of periodicity, but here we are getting well beyond the scope of our essay, 
and the best we can do for the curious ones is to refer them to, say, the 
exiting book by James Gleick, titled "Chaos". 

It's worth noting that, although the discussed here phenomenon of Kar
man vortex trails may look like a rather academic example of just another 
nice quirk of nature, having not much practical significance, in reality — it's 
quite the opposite. Electric power transmission lines, for example, swing in 
the blowing at a constant speed winds because of these periodically born 
and released vortices. And this inevitably creates quite powerful at times 
extra stress at the points of wire fastenings to the supporting towers, which, 
if neglected, could (and, unfortunately, have) lead to their breakage (some
times very dangerous). The same holds for, say, tall industrial stacks. 

Yet, probably the most renowned engineering calamity of this kind hap
pened in Tacoma (Washington), in November 1940, when a new auto bridge 
(two lanes, about half a mile long) built just a couple of months before, 
Fig. 16.4, had started swaying and swinging violently and shortly had col
lapsed, luckily not killing or injuring anybody (except for the legendary dog 
mentioned in the epigraph). 

A special committee from the Federal Works Agency had been appointed 
to investigate the accident, with T. von Karman as one of its members, by 
the way. And the committee's conclusion read that the Tacoma Narrows 
Bridge had crashed due to "forced vibrations excited by random action 
of turbulent wind". Well, a while after, a new bridge was built, but this 

a T . von Karman, (1881-1963), Having greatly contributed to the field of fluid dynamics, 
he is known as the father of supersonic flight. Hungarian born, he worked for the US 
government during the World War II, and then for NATO Aeronautical Research and 
Development Advisory Group. Chairman of Belgium Institute for Fluid Dynamics (now 
called Von Karman Institute, VKI). 
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Fig. 16.4: Growing 

oscillations excited 

by turbulent vortices 

led to the collapse of 
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time with completely different profile of the wind-exposed surfaces, having 
eliminated, thereby, the cause for unruly vibrations. 





Chapter 17 

The footprints on the sand 

Have you ever thought if walking on a beach we compress the sand under 
our feet? On the face of it stepping onto the sand one presses the grains 
together and rams it. But actually the things may turn quite the opposite 
way. Here is the proof — the footprints left on the wet sand of a sea or 
river beach stay dry quite a while. The English scientist known for his 
works on hydrodynamics, O. Reynolds*, noted in his talk at the meeting 
of the British association in 1885, that when the foot had stepped onto 
the sand still wet after the ebb, the surrounding area immediately became 
dry. . . According to him the pressure of the foot loosens the sand and the 
stronger it has been the more water is absorbed. This makes the sand dry 
until enough water comes from below. 

But why does pressure widen intergranular spaces so that the available 
water suffice no longer to fill them? For scientists of nineteenth century 
this was not an idle question. The answer was immediately related to the 
atomic structure of matter. This makes the topic of the present chapter. 

17.1 The dense packing of balls 

Is it possible to fill the entire space with rigid balls of the same radius? Of 
course, not, there will always be voids in betweenb. The fraction of space 

a O . Reynolds, (1842-1912), English physicist and engineer, specialist in theory of tur
bulence, theory of viscous flows and theory of lubrication. 

bIn principle, it is possible to fill the space with balls provided that their radii n , T2 , . . . 
form an infinite sequence and limn_K3o r n = 0. However this is of little interest for 
solid-state physics. — A . A. 
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occupied by the balls is called the packing density. The closer the balls lie, 
the less space is left between them, the higher is the packing density. But 
when does the density reach the maximum? The answer to this question 
gives the clue to "the mystery of the footprints on the beach". 

Let us start from the simpler case and study packings of equal circles 
in the plane. Dense packings of circles can be obtained by inscribing those 
into the cells of mosaics (tilings of the plane) composed of equal regular 
polygons. There are only three variants: to cover the plane by equilateral 
triangles, by squares and by hexagons. The packings of circles in the cells of 
the square and hexagonal mosaics are shown in Fig. 17.1. It is seen by eye 
that the second pattern (b) is more economical. The accurate calculation 
(that you may carry out yourselves) proves that in this case 90.7 % of the 
surface is covered by circles whereas for squares, (a), the portion makes 
only about 78 %. The hexagonal packing is the most dense possible in the 
plane (or, as modern physicists like to say, in two dimensions). Maybe this 
was the reason for the bees to use it for the honeycomb. 

HHHH 
HXHH 
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a b 

Fig . 1 7 . 1 : Planar packings of c i r c l e s inscr ibed 
i n to the c e l l s of t i l i n g s of the plane by equal 
r egu la r polygons. 

A dense spatial packing of balls may be realized as follows. Let us first 
prepare a dense plane layer of balls placed on a flat surface in the economical 
order described above. We shall call it the X-layer. Now try to put onto 
it the similar hexagonal second layer. We could do this so that each of the 
balls of the upper layer would lie right over a ball of the lower one, as if we 
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were filling cells of invisible honeycomb. However in this XX-packing too 
much empty space will be left. The volume occupied by balls when laid in 
this manner is only 52 % of the whole. 

It is clear how to augment the density. One must simply put upper balls 
into the holes formed by three touching balls below. (This may be called 
the XF-arrangement). But it is impossible to fill all the holes at once — 
one of the two adjacent holes will always remain free, Fig. 17.2. Therefore 
when putting on the third layer we face a choice. We may either put balls 
above the holes of the ground X-layer which were left free by the second 
Y-one (one of these points is denoted by A in Fig. 17.2, b) and build a new 
Z-layer; or we can place them right over the balls of the base (the point 
B in Fig. 17.2, b) in the X-order. Regular spatial patterns are obtained 
if successive layers follow periodically one of these prescriptions, that is, 
either XYZXYZ... or XYXY... As a result we obtain the two ways of 
spatial packing of balls depicted in Fig. 17.3. In both cases the balls fill 
about 74 % of the space. 

It is easy to count that every ball in these packings touches 12 others and 
the points of contact are vertices of a 14-faced polyhedron0. The faces of 

cThe Greek word tettarakaidecahedron (TeTTapaKcaSeKaeSpou) is out of common use. 
—A. A. 



152 The footprints on the sand 

these polyhedra are alternating squares and equilateral triangles. Say, the 
first choice (Fig. 17.3, 6) produces the cuboctahedrond shown in Fig. 17.4. 

F ig . 17 .3 : In t h r ee dimensions t h e r e a re two 
compact arrangements of i d e n t i c a l b a l l s . 

So long we only studied how to arrange balls so that they fitted a peri
odical spatial honeycombe. But is it possible to construct a dense packing 

dCuboctahedron belongs to the so-called Archimedes solids. This class comprises 13 
convex polyhedra with congruent vertices and surfaces composed of regular polygons of 
two different types. The name cuboctahedron itself belongs to J. Kepler (see page 155). 
The packing in Fig. 17.3, 6 does not correspond to any of Archimedes bodies since it 
generates two different types of vertices. —A. A. 

e Another way to say this is that the centers of the balls formed a periodic lattice.—A. A. 
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without this condition? An example is presented in Fig. 17.5. The balls 
in planes mark out the sides of concentric regular pentagons. The nearest 
balls of the same pentagon are in contact, but pentagons within a layer are 
separated. The sides of pentagons in alternating layers contain even and 
odd numbers of balls respectively. The packing density of this arrangement 
is 72 % that is not much less than that of the dense hexagonal arrange
ments shown in Fig. 17.3. There is a way to pack balls so that the centers 
do not form a lattice whereas the packing density reaches even 74%. Yet 
the question whether denser packings exist remains open up till now. 

F ig . 17 .5 : Pentagonal 
packing of b a l l s . 
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Let us return to the footprints on the beach. Now we know that there 
are special arrangements of balls that leave only a small amount of voids in 
between. If one disturbs such an arrangement displacing, for instance, the 
balls of one layer away from the holes of the next one the voids will grow. 
Certainly nobody has cared about arranging the grains of sand in a special 
way. But how could we force sand to be densely packed? 

Remember the common wisdom. What do you do when pouring grain 
into a can? You shake or pat the can in order to fill it better. Even if the 
grain has been rammed patting helps to fit something in. 

The scientific investigation of this trick was undertaken in fifties by the 
British scientist G. Scott who was loading spherical flasks of different radii 
by ball bearings. When they were filled without shaking, so that the balls 
found places by occasion, the empirical dependence of packing density on 
the number of balls had the form: 
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where JV was the number of balls. You can see that in case that the number 
of balls is very big (it has reached several thousands in the experiments) 
then the density tends to become constant and corresponds to the filling of 
60 % of space. But shaking the container in process of being filled helps to 
increase the density: 

Yet even in this case it is much less than 74 % which corresponded to the 
regular packing of balls. 

The results of the experiment deserve attention. Why is the addition 
inversely proportional to \^N? The balls near the walls of the flask are in 
a special position with respect to those inside. This affects the density of 
packing. The magnitude of their contribution is proportional to the ratio 
of the surface (~ -R2) to the volume (~ R3) of the container being inversely 
proportional to the size of the system (R). By the volume of the system 
we mean the entire volume occupied by the balls including spaces between 
them. The size of the system is R ~ \/N since the volume is proportional 
to the number of balls. Dependencies of this type often appear in physics 
when one has to take into account surface effects. 

You see that accurate experiments are in agreement with the common 
sense and prove that shaking of granular substances helps to enlarge the 
density of packing. But still, what is the reason? Remember that positions 
of stable equilibrium always correspond to minima of potential energy. A 
ball may forever lie steadily in a hole but it will immediately roll down from 
a bump. Something of the sort happens here as well. Shaking the flask 
makes balls roll to free spaces so that the density of packing is increased 
and the total volume of the system becomes smaller. As a result the level 
of balls in container goes down. Consequently, the center of mass of the 
system gets lower and the potential energy is decreased. 

Now, at last, we can figure clearly enough what happens to the wet 
sand. Incessant surf agitates it until a dense packing of grains is formed. 
Stepping onto the sand by foot we disturb the arrangement of granules and 
augment intergranular poresf. Water from the upper sand layer soaks down 
to fill the pores. This looks like "drying" of the sand. Taking the foot away 

fNote that according to Reynolds (see page 149) this refers to the sand around the 
footprint whereas right under the sole it stays densely packed. —A. A. 
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restores the dense packing and the depression left by the foot gets filled 
with water expelled from narrowing voids. It may happen though that 
after strong compression the dense packing can not be recovered. Then 
the footprint will become wet only as water rises from below and fills the 
widened pores. 

It is interesting that these features of granular matters were well known 
to Indian fakirs. One of their tricks consisted in sticking several times a long 
thin dagger into a narrow-necked vase poured with rice. At some moment 
the dagger got stuck in the rice and it was possible to lift the vase holding 
it by the dagger handle. 

Evidently the secret was that piercing randomly poured rice helped 
to "optimize" the packing of grains just like the shaking would. One may 
imagine this like a sort of compression wave propagating in a loose medium. 
In the beginning the grain was packed compactly right around the blade 
but lay freely in the bulk and near the walls. The "front" of the wave (sure 
a rather smooth one) divided the dense core from the loose environment. 
The front had been advancing further with every next stab and when at last 
it reached the walls of the vessel the rice throughout the volume became 
densely packed. In other words the possibilities to compress it further were 
exhausted. The properties of the substance changed drastically, it became 
"incompressible". And this was the moment when the dagger got stuck, 
since the pressure of grains onto the blade and consequently the friction 
were enough to hold it6. 

A 
Caution! In case that you've decided to surprise your party 

fellows, please, avoid taking glass flasks and china vases. The result can be 
quite unexpected. 

17.2 The long-range and short-range orders 

Of course the atoms of which all the bodies are built are far not the rigid 
balls. Yet simple geometrical arguments help to understand the structure 
of matter. 

The first one to apply geometrical approach was the German scientist 
Johann Keplerh who in 1611 put forward the idea that the hexagonal form 

g The paragraph was added to the English edition by — A . A. 

h J . Kepler, (1571-1630), German astronomer, creator of celestial mechanics. The famous 
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of snowflakes is related to the dense packing of balls. Mikhail Lomonosov' 
in 1760 first delineated of the most compact cubic packing of balls and 
used that to explain the forms of crystal polyhedra. The French abbot R.-
J. HaiiyJ noticed in 1783 that all crystals may be constructed of a plethora 
of repeated parts, Fig. 17.6. He explained the regular form of crystals by 
suggesting that they are built of identical little "bricks". Finally in 1824 
the German scientist A. 1. Seeber proposed the model of crystal composed 
of regularly set little spheres interacting like atoms. The dense packing of 
the spheres corresponded to the minimum of potential energy. 
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Fig . 17.6: P i c tu re s from the a t l a s by R . - J . Haiiy 
t h a t was published in the beginning of XlX-th 
century. 

Structures of crystals are the subject matter of the special science called 
crystallography. Presently periodic arrangement of atoms in crystals is a 
well-established fact. Electronic microscopes offer a possibility to see this 

Kepler laws of planetary motion laid the base for Newton's discovery of the law of 
gravitation. Kepler's interest in polyhedra was a tribute to the idea of the world ruled 
by mathematical harmony. According to Kepler ratios of the radii of planetary orbits 
in the Solar system could be related to properties of regular and uniform polyhedra. 

'M. V. Lomonosov, (1711-1765), the first scientist of the world importance in Russian 
history. Successfully worked in natural sciences including physics, chemistry, material 
science as well as in literature, poetry and painting. Founded the Moscow University. 

JR.-J. Haiiy, (1743-1822), French crystallographer and mineralogist. 
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by eye. The tendency toward close packing positively does exist in the 
atomic world. About 35 chemical elements crystallize so that their atoms 
are situated like the balls depicted in Fig. 17.3. Centers of atoms (or, to 
be precise, atomic nuclei) make up in space a so-called crystal lattice that 
consists of periodically repeated units. The elementary lattices that may 
be constructed by shifting periodically just a single atom are called Bravais 
lattices (after the French naval officer Auguste Bravaisk who was the first 
to develop the theory of spatial lattices). 

There are not so many Bravais lattices, namely only fourteen of them. 
The reason is that far not every symmetry element survives in periodic 
lattices. For instance, a regular pentagon may be turned around the axis 
passing through the center and it will coincide with the original five times 
per revolution. One says that it has a fivefold symmetry axis. However 
a Bravais lattice can not have a fivefold axis. If such a lattice existed the 
nodes of must be vertices of regular pentagons and those, in turn, would 
cover without breaks the entire plane. But it is well known that there is no 
tiling of plane by pentagons, Fig. 17.7! 

F ig . 17 .7 : I t i s 
impossible t o t i l e the 
plane by r egu la r 
pentagons. 

So all crystals can be composed of repeated units. This property is 
called translational symmetry. One may also say that there is a long-range 
order in crystals. Probably this is the main property that distinguishes 
crystals from other bodies. 

There is, though, a none less important class of substances which are 

k A. Bravais, (1811-1863), French crystallographer. 
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deprived of the long-range order. These are amorphous substances. An 
example of amorphous state is presented by liquids. But solid matter also 
may be amorphous. The structure of glass is portrayed in Fig. 17.8 together 
with that of quartz which has the same chemical composition. But quartz 
is a crystalline substance in distinction from the amorphous glass. The 
absence of a long-range order does not mean that atoms in glass are situated 
chaotically. You may see in the picture that certain ordering of the nearest 
neighbors is preserved even in glass. This is called a short-range order. 

Recently amorphous materials have found important technical applica
tions. For example, amorphous metal alloys (metallic glasses) are marked 
by unique properties. It turned out that they possess enhanced hardness, 
high corrosion resistance, exhibit an optimal compromise of electric and 
magnetic characteristics. Metallic glasses are obtained by means of ex
tremely fast cooling of liquid metal: velocity of cooling must be of the 
order of several thousands degrees per second. This may be realized by 
sputtering tiny droplets of metal onto the surface of rapidly spinning cold 
disk. Droplets get squashed against the disk forming a film of several mi
crons thickness and the instantaneous removal of heat simply leaves no time 
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for the atoms to arrange properly when cooling1. 
Interesting studies that shed light on the structure of amorphous solids 

were carries out in 1959 by the English scientist J. Bernal1". Equally-sized 
balls of plasticine were randomly put together and compressed into a big 
lump. The polyhedra obtained after disjoining them back turned to have 
mainly pentagonal faces. The experiment was repeated with lead pellets. 
If the pellets had been laid densely and regularly then the compression re
molded them into almost regular rhombododecahedrons". On the other 
hand, if pellets had been poured unintentionally they transformed into 
irregular 14^faced polyhedra. Among the faces of those were tetragons, 
pentagons and hexagons forms, but pentagons prevailed. 

In modern technology it is often necessary to densely pack the elements 
of a contrivance. For instance, Fig. 17.9 shows cross section of a supercon
ducting cable made of large number of superconducting wires enclosed in 
a copper envelope. At first the wires had been cylindrical but after rolling 
they became hexagonal prisms. The more densely and accurately have been 
the wires packed the more regular hexagons are seen at section. This is an 
evidence of the high quality of the cable. If density of packing is interrupted 
pentagons appear at section. 

Fivefold symmetry is widespread in nature. Figure 17.10 presents a 
photograph of a viral colony. What a striking similarity it has with the 
pentagonal packing of balls portrayed in Fig. 17.5! Paleontologists even 
use the presence of fivefold axes in fossils as a proof of their biological 
(contrary to geological) origin... See what far away from the deserted beach 
the footprints have led. 

In the method of melt spinning, a jet of molten metal is propelled against the moving 
surface of a cold, rotating copper drum. A solid film of metallic glass is spun off as a 
continuous ribbon at a speed that can exceed a kilometer per minute. 

m J . Bernal, (1901-1971), English physicist, specialist in X-ray diffraction analysis, stud
ied structures of metals, proteins, viruses etc. 

"Rhombododecahedron (or rhombic dodecahedron) is a polyhedron with twelve rhombic 
faces and 14 vertices. It may be obtained as a result of uniform squeezing of the 
hexagonal packing depicted in Fig. 17.3, a. A way to construct it geometrically is to 
draw mutual tangential planes of a ball and all its neighbors. In the compact packing 
shown in Fig. 17.3, a it plays the role of the unit cell which belongs to hexagons in the 
planar tiling, Fig. 17.1, 6. Each ball is inscribed into a rhombododecahedron and those 
fill the entire space. — A . A. 
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Fig . 17.9: Cross 
sec t ion of 
h igh -qua l i t y 
superconducting cab le . 
After r o l l i n g 
c y l i n d r i c a l wires 
became hexagonal. 

F ig . 17.10: 
Electron-microscope 
photograph r evea l s the 
f ivefo ld symmetry of 
v i r a l colony. 

Was it really important that Indian fakirs took for 
their trick metal vases with long slim necks? What 
must be the ratio of volumes of the neck and the 
body of the vase? 



Chapter 18 

How to prevent snowdrifts 

Sections of roads and railroad tracks passing through hollows are often 
covered with snow even if there have been no snowfalls recently. Why 
does this happen? Certainly, the answer is at the surface: the snow has 
been brought by wind. However it took a good deal of investigation to 
understand in detail the mechanism of the process. 

In 1936 the English geologist Ralph Bagnolda studied wind transport 
of sand in air tunnel. He has discovered that unless the wind velocity is 
larger than some critical value V\ the sand does not move. If the velocity 
of air flow is higher than v\ but yet less than another value v2 the mass of 
sand may stay at rest. However an occasional sand grain falling from above 
brings on several rebound particles. These ones get caught by the wind 
and, when falling down, knock out more sand grains from the base layer. 
As a result the sand gets carried by the wind in a kind of leaping motion. 
In case that velocity exceeds v2 the wind lifts and blows along substantial 
clouds of sand. The density of the clouds decreases with height though. 
Trajectories of sand grains may be viewed in Fig. 18.1. 

Now we can explain why wind fills dips with snow. Look at the picture 
of flow lines in Fig. 18.2. It is obvious that when traversing a hollow the 
air flow widens and its velocity lessens. This disturbs the balance between 
deposited and lifted particles: more particles fall down than are taken away. 
So the depression gets gradually filled with snow. 

Analogous processes take place when the snow carried by wind encoun
ters an obstacle, say, a tree. Meeting the trunk the incident flow turns up 

aR. A. Bagnold, (1896-1990), English geologist, expert in the mechanics of sediment 
transport and eolian (wind-effect) processes. 
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Fig . 1 8 . 1 : 
T ra j ec to r i e s of sand 
p a r t i c l e s in a i r flows 
of d i f f e r e n t s t r e n g t h . 

F ig . 18 .2: Flow l i n e s 
r a re fy when wind 
crosses a hollow. 

and the ascending current of air is formed. This current digs a deep hole 
on the windward side of the tree. In the same time in front of the hole and 
behind of the tree the speed of wind is smaller and a mound is heaped up. 

This phenomenon helps prevent snow-binding of low-lying road sections. 
A protecting fence is made of wooden planks at a certain distance windward 
of the road. Behind the fence a lee zone of steady light wind is established 
where all the snow precipitates. 

The same mechanism explains the motion of sand dunes. A strong 
enough wind blowing against a dune picks up sand on the windward side. 
On the rear of the dune the air flow slows down and the sand falls back 
down. As a result, with time dunes get inch-by-inch moved along with the 
wind, the dunes "wander". 



Chapter 19 

The incident in the train 

Not so long ago the authors of these lines had to return from Venice 
to Naples by express train. The train ran fast (its velocity was about 
150 km/h) and landscapes that looked like paintings by Renaissance mas
ters flitted by outside the window. In perfect accord with their canvases, 
the country was hilly, and we sometimes flew over a bridge or dove into a 
tunnel. 

In one of especially long tunnels between Bologna and Florence, we 
suddenly felt a dull pain in our ears, as happens to air passengers when 
taking off or landing. It was clear that the same sensation visited all our 
fellow travelers, who swayed their heads trying to get rid of the unpleasant 
feeling. 

But when the train finally burst out from the narrow tunnel the dis
comfort passed, however one of us, who wasn't used to such surprises on 
the railways, got interested in the origin of this phenomenon. Since it was 
evidently connected with a pressure jump, we started a lively discussion of 
possible physical causes. 

At first glance it seemed to us that the air pressure in the gap between 
the tunnel walls and the train had increased in comparison with the at
mospheric one, but this assumption became less and less obvious as the 
discussion went on. In such matters mathematics is the best judge, so we 
attempted to approach the problem quantitatively. Soon the explanation 
was ready and it came down to this. 

Let's consider a train with a cross-sectional area St that moves at a 
velocity Vt in a long tunnel with a cross-sectional area So- First of all, let's 
switch to the inertia! coordinate frame associated with the train. We'll take 
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the air flow as stationary and laminar and ignore its viscosity. The motion 
of the tunnel walls relative to the train need not be taken into account in 
this case — because of the absence of viscosity it doesn't influence the air 
flow. We'll also assume that the train is sufficiently long so that one could 
ignore end effects near the front and rear cars. We shall assume that the 
air pressure in the tunnel is constant and does not vary along the whole 
train. 

You see, that gradually eliminating minor details, we'd passed from the 
actual movement of the train to a simplified physical model that could be 
analyzed mathematically. Here it is. 

We have a long tube (the former tunnel) with air being blown through 
it and a cylinder with streamlined ends (the former train) coaxially fixed 
inside3, Fig. 19.1. Far away from the train (at the cross section A — A) the 
air pressure equals the atmospheric one po- Velocity of the air flow at this 
section is equal in magnitude and opposite in direction to the velocity of 
the train vl with respect to the ground. Let's examine some cross section 
B — B (just in case, we may place B — B far enough from the ends of the 
train so that our assumptions were justified). We'll denote the air pressure 
in this cross section by p and the air velocity by v. These values can be 
linked with vt, and po by means of the Bernoulli15 equation: 

p+ef=Po + eA, (19.D 
where p is the air density. Equation (19.1) contains two unknowns, p, and 
v; so in order to determine p we need one more relation. This is provided 
by the condition of conservation of the air flow. According to it the mass 
of air passing through any cross-section of the tube in a unit of time is 
constant and equals: 

pvtS0 = pv(S0-St). (19.2) 

This equation expresses the fact that the air mass can neither appear nor 
disappear while it flows through the tube. It's usually called the condition 
of flow continuity. 

aNote that actually we replaced the ordinary railway tunnel by an air tunnel like those 
where airplanes are tested. 

bDaniel Bernoulli, (1700-1782), Swiss physicist and mathematician born in the Nether
lands (son of the Swiss mathematician Johann Bernoulli); formulated the fundamentals 
of theoretical hydrodynamics. 
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±{ ^ 
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Fig . 1 9 . 1 : Air flow around f a s t t r a i n i n a tunne l 
i s very s imi l a r t o t h a t in t h e a i r t u b e . 

As you probably have noticed, we take the air density in equations (19.1) 
and (19.2) to be constant. For this assumption to be valid two conditions 
must hold. The first one requires that the pressure jump we are looking 
for, Ap, must be much less than the pressure itself: Ap <C p. If the air 
temperature does not change along the tube, then, according to equation 
(19.4), its density is proportional to pressure: pot p. For small Ap we may 
neglect the density change Ap = p-^ <C p- We shall see later that this is 
indeed the fact. The second condition concerns flow velocities at different 
sections of the tunnel. In order that the density was uniform throughout 
the tube there must be enough time for air to come to equilibrium. This 
means that velocities of the flow must be much less than the root-mean-
square velocity of chaotic thermal motion of the molecules. It's just this 
velocity that determines the characteristic time required to establish the 
constant equilibrium gas density on the macroscopic scale. 

EUminating the velocity v from equation (19-1) by means of equation 
(19.2), we get: 

'—-^((sA?-1)- (ia3) 

The air density p can be expressed in terms of p by the Mendeleyev-
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Clapeyron equation (as we have already done in Chapter 12, see equa
tion (12.3)): 

p v R T , uy-4) 

where /* = 29 is the molecular mass of air, T is the absolute temperature 
and R is the gas constant per mole. After substituting this into (19.3), we 
get: 

P=Po l - . ' 1 ^ 
2RT {(So-Stf J (19.5) 

The combination £gfp in the right-hand side, evidently, is dimension-
less. So the expression ^JRT//i must have the dimension of velocity. Up 
to a coefficient it's easy to recognize in it the root-mean-square velocity of 
thermal molecular motion. But in aerodynamical problems another physi
cal characteristic of gas, the sound velocity v8, is more to the point. It is 
determined by the same combination of temperature and molecular mass as 
the root-mean-square velocity of molecules, but the numerical value of vs 

includes in addition the so-called adiabatic index 7. The latter is a number 
of the order of unity characteristic of a gas (for air, 7 = 1.41): 

v* = \h— • (19-6) 
Under normal conditions, vs = 1200 km/h. With the help of equation 

(19.6) we can bring the expression (19.5) to the form that will be convenient 
for the further discussion: 

P=Po l _2 i£ G^W-1)]- (197) 

Now it's time to stop and think a little. We calculated the pressure along 
the skin of the train inside the tunnel. But our ears ached not because of the 
pressure itself but because it had changed in comparison with the pressure 
p? that was there when moving in the open0. We can easily determine this 

cHere we should point out two circumstances. First, in biophysics there is the so-called 
Weber-Fechner law. According to it any changes in the environment can be detected by 
organs of sense only if the relative change of parameters exceeds some threshold value. 
The second is that in a long tunnel our organism adapts to the new conditions and the 
discomfort disappears. Nevertheless, it comes back at the exit. 
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pressure directly from equation (19.7), noticing that the open air can be 
considered as a tunnel of the infinite cross-section 5 0 ->• oo. So we have: 

p' =Pa-

This result was sufficiently evident without calculation, though. 
It's interesting to observe that the relative pressure difference is nega

tive: 

Ap p - p „ =_l(at_Y ( So -A ( i g g ) 

From this we can see that when a train enters a tunnel the pressure around 
it decreases, contrary to what we might expect at first. Now let's estimate 
the magnitude of the effect. As we have mentioned before, vt = 150 km/h 
and vs = 1200 km/h. For narrow railroad tunnels the ratio St / So is about 
1/4 (for there were two tracks in our tunnel). So we find that: 

s-Wttty-'H 
This value may seem pretty small, but if we take into account that pn = 
105 NI m2 and take the area of the eardrum to be a ~ 1cm2, we get 
an excess force AF = Apo • o ~ 0.1 N, which may turn out to be quite 
noticeable. 

So it seemed that the effect was explained, and we could call it quits. 
But something still worried us about the final equation. Namely, from ex
pression (19.8) it followed that even in the case of an ordinary train moving 
with normal velocity, so thatd ^ C l , the value of |Ap| might reach and 
even exceed the normal pressure po in sufficiently narrow tunnels! Clearly, 
within the framework of our assumptions we were getting the absurd re
sult that the pressure between the walls of narrow tunnel and train became 
negative! 

Wait a minute! Probably we have missed something that restricts va
lidity of our formula... Let's take a closer look at our findings. If Ap ~ p, 
then 

v8 \So-StJ 
dThe omnipresent in aerodynamics ratio of velocities M = v / v„ is called the Mach 

number after the Austrian physicist Ernst Mach, (1838-1916). 
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and, consequently, 

vt S0 ~ vs (S0 - St). 

Comparing the last equation with the continuity equation (19.2), we 
begin to understand the situation. If Ap becomes of the order of po the 
velocity of air flowing in the gap between the train and the walls of this 
narrow tunnel turns out to be of the order of the speed of sound. That is, 
we can't speak of laminar air flow any longer and the previously smooth 
flow becomes turbulent. 

So the correct condition for the use of equation (19.8) is not merely 
vt < vs but the more rigid one: 

^ (Sp-St\ 
vt<<v°\rs«~) 

It's evident that for real trains and tunnels this condition is always met. 
Nevertheless, our investigation of the limits of applicability of equation 
(19.8) wasn't just an empty mathematical exercise. Physicist must always 
understand the limits of validity of his result. Besides there is a quite 
practical reason to take it seriously. In the last few decades fundamentally 
new forms of transportation, including high-speed trains, were discussed 
more and more. One of the projects exploited magnetic cushion produced 
by a powerful superconducting magnet. Already in the early nineties a 
prototype maglev (an abbreviation for magnetic levitation) train in Japan 
could carry 20 passengers along the 7 km test track at a maximum speed 
of 516 km/h — that makes almost a half of the sonic speed! The vehicle 
hovered above metal rails supported by strong magnetic field and resistance 
to its motion was determined solely by aerodynamic effects. 

The next step in developing this transport was the idea of — believe 
it or not — enclosing the train in a hermetically sealed tube and reducing 
the aerodynamical factor by pumping the air out! You see how close this 
problem is to the one that has captivated us. But here physicists and 
engineers have encountered a much more complex case of vt ~ v„ and 
So—St<£. So- Therefore the air flow is far not laminar, and the temperature 
of the air changes considerably along the train. 

Modern science doesn't have ready answers to questions which appear 
when solving these problems. But even our simple estimate allows, in prin
ciple, to understand when new effects come into play and become important. 
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By the way, here are some more physical questions that might pop up 
during a train ride. 

(1) Why does the noise from a moving train increase considerably when 
the train enters a tunnel? 

(2) Which of the two rails of a track is worn down faster in the Northern 
Hemisphere? And what about the Southern Hemisphere? 

Why do express trains on close parallel tracks slow 
down when meeting? 





PART III 

Windows to the quantum world 





Finally the time has come to tell you about strange laws 
ruling in the world of microparticles. You will learn how these 
laws reveal themselves through "superphenomena" which take 
place at very low and not so low temperatures. We shall try to 
make the things as easy as possible. Still this will not be a small 
talk for any real comprehension would appeal to mathematical 
language of modern physics. But we hope that you'll appreciate 
the marvels of this unbelievable, surprising and promising world. 
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Chapter 20 

The uncertainty relation 

Coordinate and momentum resemble the male and fe
male silhouettes in antique barometer. For either of 
them to show up the second must disappear. 

Werner Heisenberg. 

In 1927 the German physicist Werner Heisenberga discovered the un
certainty relation. Suppose that watching some body we managed to de
termine the projection of the momentum onto the ar-axis with the accuracy 
Apx. Then we shall not be able to measure the corresponding x-coordinate 
with the precision greater than Aar « h/ Apx, where h = 1.054• 10 - 3 4 J • s 
is the Planck's constant. 

At first this relation looks perplexing. Remember the Newton laws 
that we have studied at school allow to find the equation of motion of a 
body and to calculate the time-dependencies of the coordinates. Knowing 
those one can compute the velocity v (that is the time derivative of the 
coordinate a?), the momentum p and its projections. It looks as if we had 
established both coordinates and momenta and there was no uncertainty 
relation. Indeed, this is the fact in classical physicsb, but the situation 
changes in the microworld, Fig. 20.1. 

a W . K. Heisenberg, (1901-1976), one of the foundators of quantum mechanics; Nobel 
Prize 1932. 

Of course the uncertainty relation holds in the macroworld too. But there it is not 
restrictive and does not play the key role. 
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Fig. 20.1: Fixing 

x-coordinate with 

accuracy equal to the 

width of the slit 

makes uncertain the 

corresponding 

projection of momentum 

20.1 Momentum and coordinate 

Imagine that we want to trace the motion of an electron. What should we 
do? Human eyes hardly answer the purpose. Their resolving ability is too 
weak to discern electron. Well, let us try a microscope. Resolution of a mi
croscope is limited by the wave length of the light used for the observation. 
Wavelengths of the usual visible light are of the order of 100 nm (10~7 m) 
and one can not see smaller particles in a microscope. Sizes of atoms are of 
the order of 10~10 m and there is no hope to discern them not to mention 
single electrons. 

But let us fantasize. Suppose that we managed to construct a micro
scope which exploits not visible light but electromagnetic waves of smaller 
length, say, X-rays or even 7-rays. The harder 7-radiation we use the 
shorter are the corresponding waves and the smaller objects can be de
tected. This imaginary 7-microscope seems to be an ideal instrument ca
pable of measuring electron positions with a desired accuracy. And what 
about the uncertainty relation? 

But think over this hypothetical experiment (some physicists like the 
German word Gedankenexperiment) once more. In order to bring the infor
mation about the position of the electron at least one 7-quantum must be 
reflected by it. One quantum carries the minimal amount of energy of the 
radiation that is equal to E = hv = hw where u is the angular frequency of 
the field oscillations. Short waves have higher frequencies and their quanta 
carry bigger energies. But the momentum of a quantum is proportional to 
the energy. Colliding with an electron a quantum inevitably transfers to the 
particle a fraction of its momentum. Because of that any coordinate mea-
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surement makes the electron momentum ambiguous. The rigorous analysis 
of the process proves that the product of the uncertainties can not become 
smaller than the Planck's constant. 

You may think that the discussion referred only to this particular case. 
Maybe we have proposed the "wrong" device and there are more delicate 
ways to measure the coordinate without "kicking" the electron to a new 
state. Unfortunately this is not so. 

The best scientists (including A. Einstein) tried to invent a device (or a 
Gedankenexperiment) which could determine position and momentum of a 
body with accuracy better than what the uncertainty relation prescribed. 
But all attempts failed. By the law of nature this is impossible0. 

Our arguments may appear vague and there is no self-evident mental 
model at hand. Real understanding demands serious learning of quantum 
mechanics. But this was enough to make the first acquaintance with the 
subject. 

In order to mark the boundary between the micro- and macroworlds 
let us make an estimate. Tiny particles used in observations of Brownian 
motion are about 1 ftm (10 - 6 m) big and weigh less than 10~10 g. Still these 
fragments of matter contain enormous numbers of atoms. The uncertainty 
relation tells us that for them At^ Ax ~ h/m ~ 1 0 _ 2 1 m 2 / s . Suppose 
that we are going to fix the particle position with the accuracy equal to 
one percent of the size, Ax ~ 1 0 - 8 m. Then Avx ~ 10~13 m / s. This is a 
very small quantity and the reason of that is the small value of the Planck's 
constant. 

Brownian velocity of such a particle is approximately 10~6 m / s. Ap
parently the inaccuracy of the velocity coming from the uncertainty relation 
is negligible. It is less than one tenmillionth (0.0000001!) even for a body 
this small. And because of the ft / m in the right side of the relation it 
does not tell for larger bodies all the more. But if we reduce the mass 
(take for example an electron) improving in the same time the accuracy of 
measurements (let Ax ~ 10 - 1 0 m, the atomic size) the uncertainty of the 
velocity becomes comparable to the velocity itself. For electrons in atoms 
the uncertainty relation carries the full weight and may not be ignored. 
This leads to breath-taking consequences. 

cLately attention of physicists was caught by so-called squeezed states. There the prod
uct of uncertainties is somewhat smaller but still of the order of ft. Existence of such 
exceptional states does not affect the general principle. — A . A. 
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20.2 The probability waves 

The simplest model of atom is the Rutherfordd planetary model where elec
trons circle the nucleus like planets orbit the Sun. But electrons are charged 
particles and orbiting brings on varying electric and magnetic fields. This 
gives rise to electromagnetic radiation which takes away energy. This fore
tells a bad lot to electrons in the planetary model: after having emitted all 
the energy they must fall onto the nucleus. Planetary model predicts col
lapse of atoms. In the mean time stability of atoms is a solid experimental 
fact. 

The Rutherford model required a "touch-up". This was done in 1913 
by Niels Bohre. In his model electrons are allowed to occupy only certain 
orbits with strictly defined energies. Electrons may change the energy only 
by jumping from one orbit to another. This "quantum" behavior explains 
many things and among those atomic spectra and stability of atoms. Even 
now it is helpful in simplified treatment of quantum effects. But it violates 
the uncertainty relation! Obviously, in contrast to the laws of microworld 
both coordinate and momentum of electron on orbit are definite, regardless 
quantum or classical the orbit is. 

The further development corrected this so-called semiclassical model. 
Actual behavior of electrons in atoms proved even more startling. 

Suppose that we managed to find where exactly the electron is at the 
momentf. Is it possible to predict positively where it will be a bit later, to 
be definite, say, in a second? No, because as we know, the coordinate mea
surement has inevitably introduced the uncertainty into the momentum. 
Predicting where the electron gets is beyond the power of devices. What 
should we do? 

Let us mark the spatial point where we have found the electron. Another 
mark will register the result of analogous measurement performed on one 
more atom of the type. The more measurements, the more marks. It turns 
out that although it is impossible to tell where the next one appears, the 

d E . Rutherford, 1st Baron of Nelson, (1871-1937), English physicist; Nobel Prize for 
chemistry 1908. 

eNiels H. D. Bohr, (1885-1962), Danish physicist; the first who proposed the idea of 
quantization; Nobel Prize 1922. 

'Another problem we meet in quantum mechanics is that electrons are identical and it is 
impossible to distinguish them. The further discussion implicitly refers to the hydrogen 
atom which contains only one electron. — A . A. 
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spatial distribution of the marks follows a pattern. The density of marks 
varies from point to point indicating whether the probability to meet the 
electron is more or less. 

We had to give up the idea to describe motion of electron in detail 
but still we can judge the chances to locate it at different points in space. 
Behavior of electron in microworld is characterized by probability! The 
reader may dislike the strange suggestion. It is absolutely out of habit 
and contradicts our intuition and routine experience. But there is nothing 
we can do about the fundamentals of nature. The laws of microworld are 
really different from those of every day. According to the comparison by 
A. Einstein we must "cast dice" in order to predict behavior of electrons. 
One has to face the facts8. 

So, in microworld a state of electron is defined by the probability to 
find it at various spatial points. In our pictorial model the probability is 
proportional to the density of marks. One may fancy that the marks form 
a sort of a cloud where electron lives. 

But what regulates the structure of probability clouds? You know that 
classical mechanics is ruled by Newton laws. Quite similarly quantum me
chanics has its own equation which determines "spreading" of electron in 
space. This equation was found in 1925 the by Austrian physicist Erwin 
Schrodinger11. (Note that this had been before the uncertainty relation 
cleared the reason of particle spreading. These things happen in physics.) 
The Schrodinger equation provides exact and detailed quantitative descrip
tion of atomic effects. But it is impossible to solve it without complicated 
mathematics. Here we shall cite some ready answers that illustrate electron 
spreading. 

Figure 20.2 presents a scheme of experiment on electron diffraction. The 
pattern of bands which appears on the screen is shown in the photograph. 
It is indubitably akin to a pattern of light diffraction. The result would be 
impossible to explain if electrons followed linear trajectories as prescribed 
by the laws of classical physics. But if they are smeared in space this 
is conceivable. Moreover, the experiment demonstrates that probability 
clouds exhibit wave properties. Probability waves such as birth rate or 
crime waves are common in day-to-day life. Amplitude of the wave is 

gWe must note that A. Einstein himself did not believe the necessity of such "gambling". 
He did not accept quantum theory till the end of his life. 

hE. Schrodinger, (1887-1961), Austrian physicist; Nobel Prize 1933. 
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maximal at the place of the greatest probability of an event. In our case it 
is most probable to find the electron there. In the photograph these zones 
are lighter in color. 

Smearing of electron in hydrogen atom as obtained by exact mathemat
ical analysis of several quantum states is portrayed in Fig. 20.3. These are 
analogues of quantum electron orbits in the Bohr model of atom. Again the 
probability to meet electron is higher in the lighter regions. The pictures 
remind snapshots of standing waves in finite domains. Probability clouds 
are really magnificent! Besides these abstract pictures do indeed define the 
behavior of electrons in atom and explain, for example, energy levels and 
all what concerns chemical bonding. 
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Fig . 2 0 . 3 : ' ' S m e a r i n g ' ' of e l ec t rons in atom. 
This i s not a photograph but a r e s u l t of 
c a l c u l a t i o n s . Symmetries of these p i c t u r e s 
s t rongly inf luence symmetries of molecules and 
c r y s t a l s . One may even say t h a t they are keys t o 
understanding of the beauty of ordered l i f e forms 
in n a t u r e . 

The uncertainty relation makes possible to estimate dimensions of prob
ability clouds without going into particulars of their structure. If the size 
of a cloud is of the order of Ax then it makes no sense to speak of co
ordinate uncertainties greater than Aa:. Consequently, the uncertainty of 
momentum of the particle, Apx, can not be less than h/ Ax. The same 
expression determines by the order of magnitude the minimal momentum 
of the particle. 



182 The uncertainty relation 

The smaller is a cloud, the bigger are the momentum and velocity of 
motion within the localization domain. It turns out that these general 
considerations suffice to make a correct estimate of the atomic size. 

Electron in atom has both kinetic and potential energies. The kinetic 
energy is the energy of the motion. It is related to the momentum by the 
well-known formula: E^ = m v2 / 2 = p2 j 2m. The potential energy of the 
electron is the energy of interaction with the nucleus. In the International 
System of Units (SI) it is equal to Ep = —5^-7- where e is the charge 
of electron, r is the distance between the electron and the nucleus and the 
dimensional constant is called the permittivity of free space. It may be 
found from the equality ^Treo)"1 = 9 • 109 m / F = 9 • 109 J • m / C2 . 

The electron has definite value of the full energy E = Ek + Ep in every 
state. The state with minimal energy is called the ground (nonexcited) 
state. Let us estimate the atomic radius for the ground state. 

Imagine that the electron is spread over a domain of dimension ro- At
traction to the nucleus tends to make ro smaller and collapse the probability 
cloud. This corresponds to lessening the potential energy that by the order 
of magnitude is — ̂ - j - (the absolute value of the negative quantity grows 
as ro goes down). In case that kinetic energy was not there electron would 
fall onto the nucleus. However, as you remember, localized particles al
ways possess kinetic energy by virtue of the uncertainty relation. And this 
prevents electrons from falling down! Decreasing ro enhances the minimal 
momentum of the particle po ~ ft / ro and as a result the kinetic energy 
Ek ~ ft2 / 2m TQ grows too. The full energy of electron E is minimal when 
the derivative dE / dro is zero. From this we obtain that the minimum 
corresponds to 

4T£O ft2 , o n ,.. 

ro 5-- (20.1) 

This determines the typical dimension of localization domain that is es
sentially the atomic radius. The obtained value of r0, (20.1) is 0.05 nm 
(5 • 10~ u m). As you know by the order of magnitude this is the actual 
dimension of atom. Obviously if the uncertainty relation makes possible to 
correctly estimate atomic radius it must belong to the most profound laws 
of the microworld. 

Another principle that follows directly from the uncertainty relation 
pertains to complex atoms. Ionization energy Ei is defined as the work 
required for detaching an electron from the atom. It can be measured pretty 
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accurately. Imagine that the product of y/Ei and the atomic size d is the 
same for absolutely different atoms up to 10-20%. Probably the reader 
has already guessed the reason: the momentum of electron is p ~ v2mE 
and according to the uncertainty relation the product p • d ~ h must be 
constant. 

20.3 The zero-point oscillations 

Impressive results come out of applying the uncertainty relation to oscilla
tions of atoms in the solid state. Atoms (or ions) oscillate about the nodes 
of crystal lattice. Usually the oscillations are due to thermal motion and 
increase as temperature rises. But what happens if temperature is reduced? 
Prom classical point of view the amplitude of oscillations will decrease and 
atoms will come to halt at absolute zero. But is this possible from the point 
of view of quantum laws? 

Shrinking the amplitude of oscillations means, in quantum language, 
compressing the probability cloud (or the localization domain) of a parti
cle. We have seen, that because of the uncertainty relation, the price to 
pay will be the enhancement of the particle momentum. Attempts to ar
rest a quantum particle fail. It turns out that even at the absolute zero 
temperature atoms in solids do oscillate. These zero-point oscillations give 
rise to a number of beautiful physical effects. 

First of all let us try to estimate the energy of zero-point oscillations. 
In oscillatory system a restoring force F = —kx appears as the body is 
shifted to a small distance x away from the equilibrium. For a spring k is 
the elasticity coefficient while in solid it is defined by forces of interactions 
between the atoms. The potential energy of the oscillator is 

_ k x2 _ m u2 x2 

where w = y/k / m is the frequency of oscillations. 
This means that the energy of oscillator may be expressed in terms of 

the amplitude of oscillations xm a x , 

muj2x2
m^ I 2E 

But in quantum language the amplitude of oscillations is the typical 
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dimension of the localization domain that, because of the uncertainty re
lation, determines the minimal momentum of the particle. It comes out 
that, on the one hand, the smaller is the energy of oscillations the smaller 
the amplitude must be. But, on the other hand, reducing the amplitude in
creases the momentum and, consequently, the kinetic energy of the particle. 
The minimal energy of a particle is given by the estimate, 

pi ti2 h2 mw2 

2 m mxy m E0 

Comparison of the last two expressions results into E0 ~ HLJ. The exact 
calculation gives the twice smaller value. The energy of zero-point oscilla
tions is equal to hu / 2. It is maximal for light atoms that oscillate with 
higher frequencies. 

Probably the brightest manifestation of zero-point oscillations is the ex
istence of a liquid that does not freeze even at the absolute zero. Obviously 
a liquid will not freeze if the kinetic energy of atomic oscillations is enough 
to destroy the lattice. It does not matter whether the kinetic energy appears 
due to the thermal motion or due to the quantum oscillations. The most 
likely candidates for nonfreezing liquids are hydrogen and helium. The en
ergy of zero-point oscillations is maximal in these lightest substances. But 
above that helium is an inert gas. The interaction between helium atoms 
is very weak and it is comparatively simple to melt the crystal lattice. It 
proves that the zero-point oscillations energy is enough and helium does 
not freeze even at the absolute zero. On the contrary the interaction of 
atoms in hydrogen is much stronger and it freezes despite the zero-point 
oscillation energy of atoms is greater in hydrogen than in helium. 

All other substances do freeze at absolute zero too. So helium is the only 
one that always remains liquid at normal pressure. One may say that it is 
the uncertainty relation that prevents it from freezing. Physicists call he
lium a quantum liquid. Another exceptional property it has is superfluidity, 
which is also a macroscopic quantum phenomenon. 

Still under the pressure of about 2.5 MPa liquid helium becomes solid. 
Although the solid helium is not quite an ordinary crystal. For example 
kinetic energy of atoms at the interface of solid and liquid helium is de
fined by the zero-point oscillations. This enables the crystal surface to 
perform gigantic oscillations as if it was an interface of two nonmiscible flu
ids, Fig. 20.4. Physicists have graced solid helium with the title of quantum 
crystal and vigorously investigate its properties. 
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Fig. 20.4: 
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Chapter 21 

On the snowballs, nuts, bubbles 
a n d . . . liquid helium 

Helium, despite his just second position in the periodic table of elements, 
has since its discovery been a source of great many hassles for physicists due 
to its quite unorthodox properties. Yet these troubles and headaches were 
overwhelmingly outshone by the beauty and uniqueness of physical phenom
ena occurring in the liquid helium as well as by the opportunities it offers 
to researchers and engineers in production of extremely low temperatures. 
Among the peculiarities of this quantum liquid, besides superfluidity, there 
stands also its specific, different from other liquids, mechanism of charge 
transfer. And here our story starts. 

Physicists started tinkering with this question in the late fifties. At that 
time the most probable candidates for the role of charge carriers seemed 
to be electrons and positive ions produced by ionization of helium atoms. 
The further assumption was that actually electric charge is transported not 
by the helium ions themselves (they are rather heavy and it would be too 
hard to accelerate them) but by the "holes". To get an idea of what the 
"holes" are, you may imagine that an electron sitting in a helium atom has 
leaped onto a positively charged helium ion which happened nearby. When 
doing so the electron must have left behind an empty place. However 
that "electron vacancy" may soon enough be occupied by another electron 
hopping from another atom. That new empty seat, in turn, will be taken 
by another electron, and this way it can go on and on. From aside, such an 
electron "leapfrog-game" looks as if a positively charged particle moved in 
the opposite direction. Yet since, in fact, there is no real moving positive 
charge, just an absence of electron at its "dwelling place", we can call this 
object a "hole". This charge transfer mechanism generally works fine in 
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semiconductors, so it was considered quite plausible that it works in liquid 
helium. 

As a rule, in order to measure masses of charge carriers, both positive 
and negative, researchers study their trajectories in uniform magnetic field. 
It's known that when a charged particle with some initial velocity enters 
magnetic field it starts gyrating and its trajectory becomes a circle or a spi
ral. Knowing the initial velocity and the strength of the field one can easily 
find the mass of the particle simply by measuring the radius of gyration. 
However, the results of experiments turned out to be really surprising: the 
obtained masses of both negative and positive charge carriers exceeded that 
of the free electron by tens of thousands of times! 

Sure enough, in liquid electrons and holes are surrounded and inter
act with atoms and, hence, their masses can differ from that of the free 
electron. Yet five orders of magnitude seemed way too much. Such a signif
icant discrepancy of theoretical calculations and experimental results was 
considered unacceptable even for the extravagant helium. So there arose 
an urgent need to come up with a new not known before model. 

Shortly, the correct explanation of the structure of the charge carriers in 
liquid helium was proposed by the American physicist Robert Atkinson. It 
is known that in order to transform a liquid into solid one doesn't necessarily 
need to cool it, — it's just as well possible to solidify it by compressing 
harder and harder. The pressure at which the liquid becomes solid is called 
the solidification pressure (Pg). Naturally, Ps depends on temperature: 
the higher the latter is the more difficult it gets to solidify the liquid by 
compression, and, therefore, P8 goes up. It turns out that the whole "trick" 
with the structure of the positive charge carriers is explained by the rather 
low value of solidification pressure of liquid helium: at low temperatures, 
P„ = 25 atm. And this causes very unusual structure of the positive carriers. 

We've mentioned earlier that positive ions He+ can commonly exist in 
the liquid helium. When interacting with a neutral helium atom a posi
tive He+ attracts the negatively charged electrons and repels the positively 
charged nucleus. Resulting is that the centers of positive and negative 
charges in the atom don't coincide anymore but get separated by a dis
tance. Hence presence of positive ions in the liquid helium should lead to 
polarization of its atoms. The polarized atoms are attracted by the positive 
ion and this, in turn, causes a rise of the local concentration of He atoms 
and the local density. As a result, the pressure around the ion increases. 
Graphically the dependence of the incremental pressure on distance from 
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positive ion is depicted in Fig. 21.1. 

Fig. 21.1: Polarized 
atoms are attracted by 

electric charge and 

local pressure P of 
liquid helium 
enhances. 

/> atm 
, 

25 

20 

, 

0 

l\ 
1 \P=P(rhP0 

X 

^-»^__ 

\Plr-) 

0,7 1,2 r, nm 

Well, as we already know, at low temperatures liquid helium solidifies 
at 25 aim. Since, as soon as the pressure in the vicinity of the positive 
helium ion reaches that critical value, a certain volume around it turns 
solid*. According to Fig. 21.1 for low external pressures this solidification 
takes place within approximately ro = 0.7 nm (0.7 • 1 0 - 9 m) from the ion. 
Therefore it gets "frozen" in a "snowball" formed by solid helium. Now, 
if electric field is applied, the "snowball" will start moving. But it's not 
going to move alone, sure enough, it will be accompanied by its new retinue, 
pulling along a whole "tail" of that extra density. 

Consequently, the total mass of the positive charge carrier will include 
the three major contributions. The first one is the mass of the "snowball" it
self, which is the product of the density of solid helium times the "snowball" 
volume at normal ambient pressure. This gives 32 mo (mo = 6.7-10 - 2 7 kg, 
is the mass of helium atom). The mass of the following "retinue" turns out 
to be just slightly less — the mass of the tail of extra density pulled by the 
ion amounts to 28 m0-

Besides these two, there must be one more mass added: when an object 
moves in liquid, there always occurs some displacement of masses of the 
liquid around it. This, of course, takes some energy. That is, to accelerate 

aThat, as you remember from Chapter 20, is rather flabby. 
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a body in liquid requires greater force than the same acceleration in vac
uum. So in liquid an object behaves as if its mass was somewhat greater. 
This additional mass due to the motion of liquid layers is called the asso
ciated massb. For the "snowball" moving in the liquid helium at normal 
atmospheric pressure the associated mass turns to be 15m0. 

Finally, after summing up, the total mass of the positive charge moving 
in the liquid helium equals 75mo, the value which closely agrees with the 
experimentally measured one. 

You see that the concepts of classical physics may deal successfully with 
the theory of positive charge carriers in liquid helium. But it is not so 
easy with negative ones. First of all, it happens that there are no negative 
ions in liquid helium at all (although a few of negatively charged molecular 
ions HeJ may be formed, yet they don't play any noticeable part in charge 
transfer). Hence, the electron is still the only remaining contestant for the 
role of the negative charge carrier. However, it catastrophically misses most 
of the mass required from the experimental data. And here is exactly the 
place for the idiosyncrasies of quantum world to appear. The experiment 
shows, that electron, whom we have been so stubbornly intending for the 
negative charge carrier can't even freely penetrate into liquid helium. 

To make sense of all this, we will have to digress and touch a little on the 
structure of atoms with several electrons. There is a paramount principle, 
unquestionably reigning in the microworld, determining behavior of groups 
of identical particles. When applied to electrons, it is called the Paulf 
exclusion principle. According to this rule, no two electrons can occupy 
the same quantum state at the same time. And we shall show that this 
explains the observed "aversion" of helium atoms towards free electrons 
and the troubles the latter run in when they try entering the liquid helium. 

The energy of electron in atom, as we've noted already, can have only 
certain quantum values. And what's important is that for each such value of 
energy there are several corresponding states available for electrons, varying 
by the character of their motion in atom (for instance, by the electron 
orbit shape or, in quantum tongue, the shape of probability cloud which 
defines the spread of electron in space, see Fig. 20.3). States of the same 

bWe have encountered this concept already in Chapter 12 (see page 103). 

cWolfgang Pauli, (1900-1958), Austrian physicist in the US; works in quantum mechan
ics, quantum field theory, relativity and other fields of theoretical physics; Nobel Prize 
1945. 
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energy compose a so-called shell. According to the Pauli principle, when 
the number of electrons in atom grows (as the atomic number goes up), 
they do not get "crammed" in the same states but fill one by one new 
available shells. 

The first shell, corresponding to the lowest possible energy, must be 
occupied first. Located real close to the atomic nucleus, it can take in only 
two electrons. Thus, in helium, which is the second in the periodic table, 
that first shell is completely filled. There is no choice for the third electron 
other than to stay sufficiently far from the nucleus. When such an "undue" 
electron approaches a helium atom within a distance of the order of its 
radius, there appear repulsion forces precluding the further nearing. 

Therefore, some "entrance work" is needed to ram an errant electron 
into the bulk of helium. Three Italian physicists, Carreri, Fasoli and Gaeta, 
proposed an idea that as the electron entering helium can't get too close to 
atoms, it shoves them away and thereby forms a spherically symmetrical 
cavity, some sort of a "bubble" Fig. 21.2. And this bubble with the electron 
scurrying inside is indeed the negative charge carrier in liquid helium. 
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The size of the bubble could be rather easily estimated. The repulsion 
between electrons and helium atoms, should decrease with distance. On 
the other hand, at large distances electrons should act on helium atoms in 
exactly the same way the positive ions do, that is to polarize them. So, 
far enough the interaction of electrons with helium atoms should be the 
same attraction as for the considered above situation with "snowballs". 
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Hence, when approaching a "bubbles" with the electron captured inside, 
the incremental pressure in helium rises following the law portrayed in 
Fig. 21.1. 

Yet, under normal conditions the pressure at the boundary of the "bub
ble" still remains far less than 25 atm because of the comparatively large 
size of the "bubble". Besides this pressure, resulting from the increased of 
density of the polarized helium, there is a force of surface tension. It acts at 
the bubble's border too and is directed in the same way, to the center of the 
"bubble". What would then balance these two external forces not allowing 
our "bubbles" to collapse? It turns out to be that the needed counteraction 
is created by that very same "imprisoned" electron. 

Indeed, according to the uncertainty principle, which we have discussed 
in Chapter 20, the accuracy of measuring momentum of electron is directly 
related to the uncertainty of the electron's position in space, being Ap ~ 
h J Ax. In our case the uncertainty in location of the electron is naturally 
defined by the size of the "bubble", that is Ax ~ 2R. So, the rushing 
inside captive electron should posses a momentum of the order of K / 2R 
and, consequently, have a kinetic energy Ek = p2/2me ~ h2 / 8me R2. 
Resulting from the electron's collisions with the walls of the "bubble", there 
should arise some outward pressure (remember the principal equation of the 
kinetic theory of gases, relating the pressure of gas P to the average kinetic 
energy of its chaotically moving particles and their density: P = §n£k 
). This pressure could very well balance the forces trying to squeeze our 
helium "bubble". In other words, electron confined in the "bubble" acts in 
exactly the same way as gas isolated in a reservoir, however, this "electron 
gas" consists of a single particle! The density of such a gas is, obviously, 
n = 1/V = 3/4nR3. After plugging that value and Ek « K2 /8meR? 
into the expression for the pressure, we find that Pe « h /16irmeR

5. 
Precise quantum mechanical calculations lead to a similar answerd: Pe « 
TT2H2 /4m e i? 5 . 

As long as the external pressure remains small, the dominating force 
trying to squeeze the "bubble" will be the surface tension, PL = 2 a / R, 
see Chapter 10. Hence, equating Pe = PL, one can easily estimate the 

dThe origin ot the discrepancy is that the electron prefers to stay in the middle of the 
cavity rather than near the repelling walls. This effectively reduces the uncertainty of 
coordinate and enhances the pressure. 
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radius of a stable "electron bubble" in liquid helium: 
i 

Ro= (HJL-Y «2nm = 2-l(T9m. 
\8meaJ 

We see now that the negative electrical charge in liquid helium is carried 
by "bubbles" with electrons "ensnared" inside. 

The total mass of such carriers can be calculated in the same manner as 
was done for the "snowballs". Yet, now the "bubble" itself weighs almost 
nothing for the mass of the electron inside is negligibly small compared to 
the mass of the liquid dragged by the "bubble" (the "retinue") plus the 
associated mass. So, the net mass of the carrier would be equal to the sum 
of the associated mass and the mass of the "tail" pulled by the drifting 
"bubble". Because of the rather large size of the "bubble", its resulting 
mass, 245 mo, turns out to be much greater than that of the "snowballs". 

Now, let us consider how an increase in external pressure Po, will effect 
the properties of the charge carriers. Fig. 21.1 depicts the dependence of the 
total pressure (including the external one), P = P(r) + PQ, in the vicinity 
of an ion in liquid helium versus distance from the ion for Po = 20 atm. 
Such dependence for an arbitrary value of Po < 25 atm can be graphed 
by simply shifting the curve for Po = 0, along the P-axis. As the picture 
shows, the higher the external pressure is, the further from the ion the total 
pressure attains 25 atm. Hence, with the growth of the external pressure, 
the "snowball" behaves as if it was rolling down a snowy slope: it promptly 
lumps up on itself the "snow" — solid helium, turning bigger and bigger. 
The relation between the size of the snowballs and the value of external 
pressure r(Po), is presented in Fig. 21.3. 
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And what about the "bubble"? How does it behave as Po goes up? 
Well, for some while, like any bubble in liquid, it submissively shrinks with 
the surrounding pressure growing. Its radius R(PQ) decreases as the upper 
curve in Fig. 21.3 shows. And yet, further, at P 0 = 20 atm the curves for 
r(P0) and R(Po) cross, meaning that at this point the sizes of the "bubble" 
and the "snowball" become the same and equal 1.2 nm. We know already 
the future fate of the "snowball": with rise of Po it will rapidly grow at the 
expense of the solidifying on its surface helium. But what the "bubble" is 
to do — continue to shrink following the dashed line in Fig. 21.3? 

No way! At this very moment, our "bubble" finally shows its real char
acter. As the applied pressure continues to go up, the bubble begins to act 
as a "snowball": it gets covered with icy crust of the solid helium. Indeed, 
according to Fig. 21.1 at Po = 20 atm the total pressure on the surface 
of the "bubble" becomes equal to 25 atm, reaching the solidification point 
for liquid helium. The internal radius of the bubble, protected now by its 
fancy "icy attire", ceases changing and remains approximately the same 
regardless of the further increase of pressure, whereas its external radius 
equals that of the "snowball" at the corresponding pressure. 

Thus, at external pressures greater than Po = 20 atm, our "bubbles" 
become coated by the ice shell and begin to somehow resemble nuts. With 
that difference, though, that the kernel in the "nut" is of a quite peculiar 
nature — it's an electron rushing chaotically inside the shell formed of solid 
helium. 

One last thing worth mentioning here. As Po approaches 25 atm, the 
external radii of both the "nuts" and the "snowballs" continue to grow 
bigger and bigger (trying, in principle, to reach infinity). Finally all the 
helium in the reservoir becomes solid. The role of negative charge carriers in 
the solid helium is, therefore, played by the "electron bubbles", frozen in the 
bulk of solid helium and having inherited their dimension of about 1.2 nm 
from the former "nuts". The positive charge, on the other hand, must be 
transferred by helium ions, the remnants of the former "snowballs". Of 
course, it's not so easy to carry anything in rigid environment, the electric 
charges included. So the mobility of the carriers in solid helium will be 
by many orders of magnitude lower than that of the "snowballs" and the 
"bubbles" in the liquid phase. 



Chapter 22 

The Superconductivity Passion at the 
end of the Millenium 

Probably almost all our readers have heard of superconductivity. This phe
nomenon consists in the abrupt disappearance of electrical resistance of 
some pure metals and alloys at low temperatures. Almost all over the last 
century "low temperatures" meant the range of 10-20 K, that is 10-20 de
grees above the absolute zero temperature (—273.15° C). In order to cool 
to this low temperatures a sample is usually placed into liquid helium that 
at normal pressure boils at 4.2 K and, as you already know, does not freeze 
down to the absolute zero. Throughout the century physicists and chemists 
in many laboratories all over the world have been looking for compounds 
which become superconducting at high enough temperatures and could be 
cooled, for instance, by comparatively cheap and widely available liquid 
nitrogen. So you understand that the discovery of high-temperature super
conductors, whose resistance becomes zero at temperatures above 100 K, 
was met as the greatest event in physics of recent years. Really, the prac
tical significance of this discovery can be compared to that of magnetic 
induction at the beginning of the 19-th century. It ranks with the discov
ery of uranium fission, the invention of the laser, and the discovery of the 
unusual properties of semiconductors in the 20-th century. 

22.1 Starting from the end 

The beginning of this exciting new stage in the development of supercon
ductivity was the work by K. A. Muller and T. J. Bednorz at IBM's lab in 
Switzerland. In the winter of 1985-86 they managed to synthesize a com
pound of barium, lanthanum, copper, and oxygen — the so-called metal 
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oxide ceramic La — Ba — Cu — O, a compound which had superconducting 
properties at the record at that (still recent) time temperature of 35 K. 
The article, cautiously titled "The Possibility of High-Temperature Super
conductivity in the La — Ba — Cu — O System", was turned down by the 
leading American journal Physical Review Letters. The scientific commu
nity had gotten tired over the past 20 years of receiving sensational reports 
about the discovery of high-temperature superconductors that turned out 
to be false, so it decided to save a trouble. Miiller and Bednorz sent the arti
cle to the German journal Zeitschrift fur Physik. Now that the news about 
high-temperature superconductivity finally have been heard and research 
is being done in hundreds of laboratories, every article devoted to the new 
phenomenon would start from a reference to this article. But in the fall of 
1986 it passed practically unnoticed. Just one Japanese group checked the 
result and verified it. Soon the phenomenon of high-temperature supercon
ductivity was corroborated by physicists in the United States, China, and 
the Soviet Union. 

At the beginning of 1987 the whole world was in a fever, searching 
for new superconductors and investigating the properties of those already 
discovered. The critical temperature Tc increased quickly: it was T = 
45 K for La — Sr — Cu — O and it reached 52 K for La — Ba — Cu — O under 
pressure. Finally in February 1987 the American physicist Paul Chu got 
the idea to imitate the effect of external pressure by substituting La atoms 
by the smaller atoms of Y that is the next in the Mendeleev table column. 
The critical temperature of the compound Y — Ba — Cu — O (see Fig. 22.1) 
broke the fabulous "nitrogen barrier", having reached 93° K. This was a 
long awaited triumph but far not the end of the story. In 1988 a five-
component compound of the type Ba — Ca — Sr — Cu — O with the critical 
temperature 110 K was synthesized and a little later its mercury and tallium 
analogues with the critical temperature 125 K appeared. The maximum 
critical temperature under the pressure of 30 hPa of the mercury record-
breaker looks impressive even on Celsius scale: it makes —108° C! 

The discovery of high-temperature superconductivity is unique in mod
ern physics. First, it was discovered by just two scientists with very modest 
tools. Second, the compounds include easily accessible elements. As a mat
ter of fact these superconductors can be made in a high school chemistry 
lab in a day. What a contrast with discoveries in other areas of physics 
— for instance, high-energy particle physics. There the investigations are 
carried out by large teams of scientists (the list of authors takes a whole 
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page in a journal article), and the equipment costs millions of dollars. This 
discovery was a cause for optimism: the time of lone investigators in physics 
hasn't passed! And though the discovery had been anticipated for 75 years, 
it caught everyone by surprise. Theorists could just shrug their shoulders 
and shrugged them even harder as the critical temperature went up. 

So was the discovery by Bednorz and Muller a fluke or the destiny? 
Could the discovered compound, with its unique properties, has been syn
thesized earlier? How difficult is to answer these questions! We have long 
been accustomed to the fact that everything new is obtained on the edge of 
the impossible by using unique equipment, superstrong fields, ultralow tem
peratures, superhigh energies... There is nothing of the kind here. It isn't 
too difficult to "bake" a high-temperature superconductor — a qualified al
chemist of the Middle Ages could have managed it. It's worth recalling that 
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about 10 years ago many laboratories of the world intensively investigated 
an unusual superconducting compound. This substance was called "the 
alchemic gold" because of its yellow luster and high density, which made 
it resemble the noble metal. It was synthesized by medieval alchemists, 
passed off as true gold, and advertised as the result of successfully using 
the "philosopher's stone". Alchemic gold is a complex compound, and who 
knows, perhaps a high-temperature superconductor could have been baked 
in the Middle Ages if it had been blessed with a golden luster. 

The dreams of the Middle Ages may take us too far. But you will be 
amused to hear that some of present-day high temperature superconduc
tors were in fact stored on lab shelves since 1979! At that time they were 
synthesized in quite different connection at Moscow Institute of General 
and Inorganic Chemistry by I. S. Shaplygin and his collaborators. Unfor
tunately they did not measure the conductivity of the compositions at low 
temperature which would indicate the new phenomenon. The discovery did 
not happena . . . 

22.2 From surprise to the understanding. 

Now that all the world speaks of properties and prospects of high-temperature 
superconductors many steps in the history of superconductivity appear in 
a new light. 

Superconductivity, one of the most interesting and unusual phenomena 
in solid-state physics, first became known on April 28, 1911, at a meeting 
of the Royal Academy of Sciences in Amsterdam, when the Dutch physi
cist Heike Kamerlingh Onnesb reported a recently discovered effect: the 
complete disappearance of electrical resistance of mercury cooled by liquid 
helium to 4.15 if. Though no one expected this discovery, and it contra
dicted the existing classical electron theory of metals, the fact that it was 
Kamerlingh Onnes who discovered superconductivity was not accidental. 
Actually, he was the first scientist who managed to solve the most compli
cated scientific and technical problem of the time: obtaining liquid helium 
(which boils at 4.16 if) . This allowed scientists to peek into the unknown 
world of temperatures close to the absolute zero. Kamerlingh Onnes imme-

aA superconductor baked in the Middle Ages had been doomed to oblivion for the same 
reason: there was no liquid helium at hand! —A. A. 

bH. Kamerlingh Onnes, (1853-1926), Dutch physicist; Nobel Prize 1913. 
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diately tried to apply the new experimental means and to investigate the 
low-temperature behavior of pure metals. This was the time of hot theoret
ical debate whether resistance of pure metals turns to zero or remains finite 
at absolute zero. Being the advocate of the first side Kamerlingh Onnes 
was clearly satisfied by the result that he had obtained for mercury. But 
soon he realized that the vanishing of resistance at finite temperature is an 
effect quite different from the expected one. 

We'd like to emphasize that the resistance of a sample in the supercon
ducting state is equal to zero not approximately but exactly. That's why 
electric current in a closed circuit can circulate as long as you like without 
damping. The maximal duration of a nondamped superconducting current 
recorded in England was about two years. (The current in the ring would 
have circulated up till now but for a strike of transport workers which 
caused a break in the supply of liquid helium to the laboratory.) Even after 
the two years, no damping of the current was detected. 

Very soon superconductivity was discovered not only in mercury but in 
other metals as well. The prospects for practical applications of the dis
covered phenomenon seemed unlimited: power transmission lines without 
waste, superpowerful magnets, electric motors, new types of transform
ers. . . But there were two obstacles. 

The first were the extremely low temperatures at which superconduc
tivity was observed in all materials known by the time. To cool conductors 
to these temperatures, scarce helium is used (its stocks are limited, and 
even now producing a liter of liquid helium costs some dollars). This makes 
many projects to apply superconductivity simply unprofitable. The second 
obstacle discovered by Kamerlingh Onnes was that superconductivity had 
turned out to be rather sensitive to magnetic fields and to the value of 
current. In fact, it was destroyed by strong fields. 

The next fundamental property of the superconducting state discovered 
in 1933 was the MeiBner-Ochsenfeld effect: the complete expulsion of mag
netic field from the volume of the superconductor. But again experimental 
investigations were complicated by the need to work with scarce liquid he
lium — before the World War II it was produced in about 10 laboratories 
throughout the world (the two of those were in the Soviet Union). 

The fundamentals of superconductivity stayed absolutely out of reach 
of classical theory of metals whereas the quantum one was in embryo. The 
so-called two-liquid model suggested a coexistence of two types of electrons 
in superconducting metals: normal electrons interact with lattice but su-
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perconducting ones for some reason don't. This assumption let brothers 
London0 to write down the equations of electrodynamics of superconduc
tors that described the MeiBner effect and some other features. Still the 
microscopic mechanism of superconductivity remained a mystery. 

In 1938 P. L. Kapitzad discovered superfluidity. It turned out that at 
temperatures below 2.18 K liquid helium can flow through whatever thin 
capillary tubes without any viscosity. The theoretical explanation of this 
phenomenon by L. D. Landaue gave rise to hopes that the theory of su
perconductivity was in the offing. It turns out that helium atoms at low 
temperature behave like quantum particles with whole spin and get accu
mulated at the lowest energy level (the Bose-condensation). Landau has 
shown that a gap that appears as the result in the spectrum of excitations 
makes possible the superfluid state. Discussing this macroscopic revela
tion of the entirely quantum effect Landau called helium "a window to the 
quantum world". 

A straightforward extension of these ideas to superconductivity failed. 
The reason was that electrons are particles with spin one-half (so-called 
fermions) and behave absolutely unlike helium atoms which possess a whole 
spin being bosons. In quantum system of electrons excitations with zero 
energy may appear even at zero temperature and the Landau criterion of 
superfluidity does not hold. 

The natural desire to reduce the problem to that already solved inspired 
the idea to prepare of two fermions a composite boson with a whole total 
spin and after that to effect the Landau superfluidity scenario. However 
this was opposed by Coulombf repulsion of electrons that was too strong in 
spite of screening that occurs in electroneutral metal. 

Ten years later, in 1950, the discovery of the "isotopic effect" first indi
cated the connection between superconductivity and the crystal lattice of 
the metal. Measurements of the critical temperature of lead proved that it 
depended on the mass number of the isotope under testing. Thus super
conductivity ceased being a purely electronic phenomenon. A little later 

CH. London, (1907-1970), British physicist; F . London, (1900-1954), American physicist; 
specialists in low temperature physics. 

d P . L. Kapitza, (1894-1984), Russian physicist; Nobel Prize 1978. 

e L. D. Landau, (1908-1968), Russian physicist; Nobel Prize 1962. 

f C. A. de Coulomb, (1736-1836), French physicist and inventor. 
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Prolich6 and Bardeen have independently demonstrated that interaction of 
electrons with lattice oscillations (phonons) may lead to attraction. This 
could in principle overcome the electrostatic repulsion but one had to keep 
in mind the huge kinetic energies of electrons. At the first sight those should 
break the just found weak coupling. Composite bosons did not work out. 

In the same 1950 with the help of experimental data and theoretical 
achievements of solid-state physics, based on quantum mechanics and sta
tistical physics, Ginzburgh and Landau (USSR) developed a phenomeno-
logical theory of superconductivity, known as the Ginzburg-Landau theory. 
It proved so successful and predictive that even now it remains a powerful 
research tool despite that the 50 elapsed years were marked by the creation 
of the microscopic theory of superconductivity. 

In 1957 the American scientists John Bardeen, Leon Cooper and Robert 
Schrieffer1 put together the mentioned above ideas and hints and created 
a consistent microscopic theory of superconductivity. It was found that 
superconductivity is indeed linked with the appearance of a peculiar at
traction of electrons in metals. This is an utterly quantum phenomenon. 

We have already mentioned that ground state of fermionic system is 
characterized by big kinetic energies of electrons. Luckily those do not 
prevent binding of low-energy excitations of the system that behave like 
quasiparticles. They have the same electric charge e as electron and some 
effective mass but their energy may be whatever small. The attraction 
brings on a rearrangement of quasiparticle spectrum and the long-awaited 
gap that was so crucial for the Landau superfluidity criterion opens at last. 

The origin of the attraction may be understood with the help of a far 
analogy with two balls lying on a rubber rug. If the balls are far from each 
other, each of them deforms the rug, making a little depression. But if 
we put a ball on the rug and place another one near the first, their holes 
will join, the balls will roll down to the bottom of the combined valley 
and lie together. In metals the mechanism is realized by deformations of 
crystal lattice. At low temperatures some quasiparticles (usually they are 
called, just the same, electrons) form a sort of bound pairs. These are 

8H. Prolich, (born 1905), British physicist. 

h V. L. Ginzburg, (born 1916), Russian physicist and astrophysicist. 

' J . Bardeen, (born 1908), American physicist; Nobel Prize 1956, 1972 (!). 
L. Cooper, (born 1930), and R. Schrieffer, (born 1931); American physicists; Nobel 
Prize 1972. 
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called "Cooper pairs" after the man who discovered the binding. The size 
of the pairs on the atomic scale is really quite large, reaching hundreds and 
thousands of interatomic distances. According to the graphic comparison 
suggested by Schrieffer, they should be envisaged not as a double star com
posed of electrons but rather like a couple of friends in a discotheque who 
either come together or dance in different corners of the hall, separated by 
dozens of other dancers. 

You see that it took almost half a century since the discovery to gain 
cardinal progress in understanding the nature of superconductivity and to 
develop the consistent theory. This period may be considered to be the 
first stage of superconductivity studies. 

22.3 Chasing high critical parameters. 

The creation of the theory of superconductivity was a powerful impulse 
to investigate it in earnest. Without fear of overstatement, we can say 
that great progress has been achieved in producing new superconducting 
materials in the subsequent years. The Soviet scientist A. A. Abrikosov's 
discovery of an unusual superconducting state in a magnetic field played a 
significant role in this development. Before then magnetic field was thought 
to be incapable of penetrating the superconducting phase without destroy
ing it (which is actually true for most pure metals}*. Abrikosov theoret
ically proved that there was another possibility: under certain conditions 
magnetic field could penetrate into superconductor in the form of current 
vortices. The core of the vortex turned into the normal state but the pe
riphery remained superconducting! Depending on the behavior in magnetic 
field, superconductors were divided into two groups: superconductors of the 
first type (old) and those of the second type (discovered by Abrikosov). It's 
important that superconductor of the first type can be changed into one of 
the second type if we "spoil" it by adding impurities or other defects. 

A real hunt for superconducting materials with high critical fields and 
temperatures started. The ingenuity of the pursuers was really bound
less. Arc welding, instant cooling and sputtering onto hot substrate were 

J Strictly speaking this is true only for cylindrical specimens placed in a magnetic field 
parallel to the axis of the cylinder. If either the specimen is not a cylinder or a strong 
enough field is oriented differently the so-called intermediate state may be realized. It 
is formed by alternating macroscopic layers of superconducting and normal phases. 
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employed. The efforts resulted into the discoveries of, for example, the 
alloys Nb3 Se and Nb3 Al which have the critical temperature (that is the 
temperature of getting superconducting) Tc = 18 K and the upper crit
ical field more than 20 T. The further progress was achieved lately with 
ternary compounds. Before the discovery of high-temperature supercon
ductors the record value of the upper critical field (60 T) belonged to the 
alloy Pb Mo6 S8 with Tc = 15 K. 

Among superconductors of the second type, scientists managed to find 
compounds capable of carrying a high-density current and bearing gigantic 
magnetic fields. And although many problems had had to be solved before 
they could find practical application (the compounds were brittle, high 
currents were unstable), the fact remained: one of the two major obstacles 
to the widespread use of superconductors in technology was overcome. 

But increasing the critical temperature still was problematic. If criti
cal magnetic fields were increased thousands of times in comparison with 
Kamerlingh Onnes's first experiments, the changes in critical temperature 
weren't too encouraging: it only managed to reach 20 K. So for the normal 
operation of superconducting instruments the expensive liquid helium was 
still necessary. This was particularly vexing because a fundamentally new 
quantum effect, the "Josephson effect", had been discovered. This made 
it possible to use superconductors widely in microelectronics, medicine, in
strumentation, and computers. 

The problem of increasing the critical temperature was extremely acute. 
Theoretical evaluations of its peak value showed that in the context of nor
mal phonon superconductivity (that is, superconductivity caused by elec
tron attraction due to the interaction with crystal lattice), this temperature 
could not exceed 40 K. But the discovery of a superconductor with such a 
critical temperature would be a great success, since that could be achieved 
with relatively cheap and available liquid hydrogen (which boils at 20 K). 
It would open the era of "mid-temperature superconductivity". This stim
ulated attempts to modify existing superconductors and create new ones 
by traditional methods of material science. But the ultimate dream was to 
create a superconductor with a critical temperature of 100 K (or, even bet
ter, above room temperature), which could be cooled by cheap and widely 
used liquid nitrogen. 

The best result of the search was the alloy Nb3 Ge with the critical 
temperature of 23.2 K. This record temperature was achieved in 1973 and 
stood for 13 years. Until 1986 the critical temperature couldn't be raised by 
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even one degree. It seemed that the possibilities of the phonon mechanism 
of superconductivity had been exhausted. In view of this, in 1964 the 
american physicist Little and the Soviet scientist V. L. Ginzburg proposed 
the following idea: if the possibility of increasing the critical temperature is 
limited by the nature of the phonon mechanism of superconductivity then 
it should be replaced by some other one — that is, electrons should form 
Cooper pairs by means of some other, nonphonon, attraction. 

During the last 20 years many theories were proposed, tens or hundreds 
of thousands of new substances were investigated in detail. In his work 
Little has drawn attention to quasi-one-dimensional compounds — long 
molecular conducting chains with side branches. According to theoreti
cal evaluations, a noticeable increase in critical temperature could be ex
pected there. Despite attempts of many laboratories throughout the world, 
such superconductors were not synthesized. But on the way physicists and 
chemists have made many wonderful discoveries: they obtained organic 
metals, and in 1980 crystals of organic superconductors were synthesized 
(the current record for the critical temperature of an organic superconduc
tor is over 10 i f ) . They managed to obtain two-dimensional layered metal-
semiconductor "sandwiches" and at last magnetic superconductors where 
the former enemies, superconductivity and magnetism, coexisted peacefully. 
But there were no new prospects for high-temperature superconductivity. 

By this time superconductors had extended the range of application, 
but the need to cool them with liquid helium remained the weak spot. 

In the mid-1970-s strange ceramic compounds of the type Pb — Ba — O 
appeared as candidates for high-temperature superconductivity. In their 
electrical properties they were "poor metals" at room temperature but be
came superconducting not too far from absolute zero. "Not too far" means 
about 10 degrees below the record value of the time. But the new com
pound could hardly be called a metal. According to theory, the obtained 
value of critical temperature was not by any means low but surprisingly 
high for such substances. 

This attracted attention to ceramics as "would be" high-temperature 
superconductors. Since 1983 Miiller and Bednorz worked like alchemists 
with hundreds of different oxides, varying their composition, quantity, and 
conditions of synthesis. According to professor Muller they were led by 
some physical ideas that are now getting validated by the most complicated 
experimental studies of the new materials. In this painstaking way they 
stealthily approached the compound of barium, lanthanum, copper, and 
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oxygen that showed superconducting properties at 35 K. 

22 A Quasi-two-dimensional superconductivity between an-
tiferromagnetic and metallic s t a tes 

A fair number of various chemical compounds exhibiting temperatures of 
the superconducting transition higher than the record of 1973 were syn
thesized by now. Chemical formulae of some of them that have critical 
temperatures above the liquid nitrogen boiling point are summarized in 
Figure 22.2. 
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The feature shared by high-temperature superconductors is the layered 
structure. The best studied high-temperature superconductor is by now 
the compound YBaa CU3 O7. Its crystal structure is illustrated in Fig. 22.1 
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on page 197. It is easily seen that atoms of copper and oxigen are arranged 
in planes interspaced by others atoms. As a result the conducting layers are 
separated by insulating ones and the motion of charge carriers (those are 
usually not electrons but holes) is quasi-two-dimensional. Namely, holes 
migrate freely within CuC>2 layers although hops between the layers are 
comparatively rare. Cooper pairs are also localized in the planes. 

Apparently the quasi-two-dimensional nature of the electron spectrum 
in high-temperature superconductors is a key to the understanding of the 
microscopic mechanism of this wonderful phenomenon. This has to be done 
yet. Nevertheless a brilliant phenomenological theory of the vortex state 
in high temperature superconductors is already at hand. It proved so rich 
with diverse effects that now, in fact, it constitutes a new realm of physics, 
i. e. the physics of "vortex matter". A bedrock of that is the quasi-two-
dimensionality of the electron liquid. 

Indeed, once electrons and Cooper pairs are confined in two dimensions 
Abrikosov vortices consist of elementary vortices which are attached to the 
conducting planes. These elementary vortices are known among physicists 
as "pancakes". At low temperature the "pancakes" draw up in a line due 
to a weak attraction between them. Then the lines form a vortex lattice. 
As temperature rises thermal fluctuations make the vortex lines more and 
more twisted and at some point the vortex lattice melts almost as if it was 
an ordinary crystal. Thus in high-temperature superconductor the ordered 
Abrikosov lattice gives way to a disordered "vortex liquid" phase formed 
by chaotically twisting tangled vortex lines. It is interesting that the fur
ther growth of temperature may break apart vortex lines and cause vortices 
to "evaporate" but at the same time preserve the superconductivity. Ele
mentary vortices in the layers will become absolutely independent of each 
other and of vortex configurations in neighboring planes. Inhomogeneities 
of various kinds that are inevitably present in real crystals make the phase 
picture of the vortex matter even more complicated. 

Despite the significant progress in understanding of properties of high-
temperature superconductors the mechanism behind the effect remains a 
secret. None less than twenty conflicting theories proclaim having explained 
the high-temperature superconductivity but what we need is the only one 
that is true. 

Some physicists believe that Cooper pairs in these superconductors are 
formed because of a magnetic fluctuation interaction of some sort. An indi
cation may be the fact that the critical temperature and the concentration 
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of free electrons drop down in crystals Y Ba2 CU3 06+x impoverished in ox-
igen, that is at x < 1, Fig. 22.3, (the right curve). At x < 0.4 one deals 
already with a dielectric but at temperatures low enough a magnetic order
ing of copper atoms takes place. Magnetic moments of neighboring atoms 
become antiparallel and the total magnetization of the crystal stays zero. 
This type of ordering is well known in physics of magnetism where it is 
called antiferromagnetic ordering (see the left curve in Fig. 22.3; here Tpj 
is the so-called Neelk temperature, that is the temperature of the transition 
to the antiferromagnetic state). One could believe that copper atoms retain 
the fluctuating magnetic moment in superconducting phase and in the long 
run that gives origin to the superconducting attraction of electrons. This 
mechanism leans on specific properties of copper atoms which, depending 
on the valence, are either magnetic or not. Presence of Cu — O layers in 
all high temperature superconductors could be considered as an argument 
in favor of the theory. However quite recently the superconductivity of 
W3 O Nao.05 at 90 K was reported. Exact composition of the supercon
ducting phase is not known yet but for sure there are no "magic" copper 
atoms in it. Moreover, none of the elements in the formula of the new high 
temperature superconductor shows magnetic properties. 

In other theories physicists try to generalize in one or another way 
the classical theory of superconductivity, revise the very basics of theory 
of metallic state, "crossbreed" superconductivity and ferromagnetism in 
spaces of higher dimension, separate spin and charge of carriers, concoct 
Cooper pairs in advance at temperatures higher than critical and under
take other attempts to explain unusual properties of the high-temperature 
superconductors in a universal manner. 

The challenge of nature waits for the answer, theoretical community 
can not come to accord. On the one hand, this may confirm the famous 
comparison with a chorus of deaf where everyone performs his own part 
and does not care of the others. But on the other, it may happen that time 
has not come and the correct theory is not formulated yet. 

k L. Neel, (born 1904), French physicist; Nobel Prize 1970. 
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Chapter 23 

What is SQUID? 

23.1 The quantization of magnetic flux 

In microworld, that is the world of atoms, molecules and elementary parti
cles, many physical quantities may take only definite discrete values. Physi
cists say that they are quantized. (We have already mentioned that accord
ing to the Bohr rule energies of electrons in atoms are quantized3 Macro
scopic bodies consist of big collectives of particles and chaotic thermal mo
tion leads to averaging of physical quantities. This smears little steps and 
conceals quantum effects at macroscopic level. 

Now, what if the body is cooled to a very low temperature? Then arrays 
of microparticles can move in accord and reveal quantization at macroscopic 
scales. A bright example is the fascinating phenomenon of quantization of 
magnetic flux. 

Everyone who has studied laws of electromagnetic induction knows what 
is the magnetic flux through a closed contour: 

$ = B S , 

where B is the value of magnetic induction and S is the area encircled by 
the contour (for simplicity let the field be normal to its plane). Nevertheless 
it will be a discovery for many that magnetic flux produced by supercon
ducting current, say, in a ring may assume only discrete values. Let us 
try to understand this at least superficially. Presently it suffice to believe 
that microparticles are moving along quantum orbits. This simplified image 

aSee page 178. 

209 
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often substitutes probability clouds in blackboard discussions. 
The motion of superconducting electrons in the ring, Fig. 23.1, resembles 

that of electrons in atoms: it seems that electrons follow gigantic orbits of 
the radius R without any collisions. Therefore a natural assumption is that 
the motion obeys the same rule as in atoms. The Bohr postulate states 
that only certain orbits of electrons are stationary and stable. They are 
selected by the following quantization rule: products of the momentum of 
an electron mv and the radius of the orbit R (this quantity is called the 
angular momentum of the electron) form a discrete sequence: 

mv R = nh. (23.1) 

Here n is a natural number and ft is the minimal increment (quantum) 
of the angular momentum is equal to the Planck constant h. We have 
already met it when talking about the uncertainty relation. It turns out 
that quantization of all physical quantities is determined by this universal 
constant. 

B,\ 

Fig . 2 3 . 1 : Elect ron in 
conducting r i n g . 

Let us find the value of the magnetic flux quantum. Consider a single 
electron and let the magnetic flux through the ring gradually increase. As 
you know the electromotive force of induction appears: 

£i = -

and the strength of the electric field is 

Si 

AT' 

E = 
2nR 

A $ 
~2wRAt' 
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By the second Newton law the acceleration of a charged particle is: 

Av eA4> 
ma — m At 2irRAt' 

where e is the electric charge. After the obvious cancellation of At we 
obtain: 

. , 2irmAvR 2n . . „. 
A<& = = AimvR). 

e e 

You see that magnetic flux across the ring is proportional to the angular 
momentum of electronsb. According to the Bohr quantization rule (23.1) 
angular momentum may take only discreet values. This means that mag
netic flux through a ring with superconducting current must be quantized 
as well: 

2ir 
mvR = nh and $ = ( - ) — » & . (23.2) 

The value of the quantum is extremely small (~ 10~15 Wb) but 20th-
century technique makes possible to observe magnetic flux quantization. 
The studies were carried out in 1961 by the Americans Deaver and Fair-
bank. The only difference was that the superconducting current circulated 
not in a ring but in a hollow superconducting cylinder. The experiment 
confirmed that the magnetic flux through the cylinder changed stepwise 
but the measured value of the quantum was twice less than that obtained 
above. The modern theory of superconductivity gives the answer. Remem
ber that in superconducting state electrons join into the Cooper pairs with 
the charge 2e. Superconducting current is a motion of these pairs. There
fore the correct value of the magnetic flux quantum <J>0 is obtained when 
substituting into the formula (23.2) the electric charge 2e of a pair: 

$ 0 = ^ = 2.07 x 10~15 Wb. 
2e 

This is the way to recover the factor two. We were not the first to miss 
it. The english theoretician F. London had lost it as well. He predicted 
the magnetic flux quantization already in 1950, long before the nature of 
superconducting state was understood. 

"The relation between encircled magnetic flux and angular momentum of electrons is 
valid both in classical and quantum physics. —A. A. 
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It is worth saying that our derivation of the magnetic flux quantization 
certainly is too naive. It is rather surprising that we contrived to obtain 
the right meaning of the quantum this wayc. In fact superconductivity is a 
complicated quantum effect. Those who want really comprehend it have a 
long and hard way ahead of them. It demands many years of resolute but 
rewarding work. 

23.2 Josephson effect 

Let us turn to another quantum superconducting phenomenon that lay 
a cornerstone for several unrivaled measuring methods. The Josephson 
effect was discovered in 1962 by a 22-year-old British graduate student and 
brought him the Nobel Prize for the theoretical prediction 11 years laterd. 

Imagine a glass plate (that is called a substrate) supporting a super
conducting film. (Usually the superconducting material is sputtered in 
vacuum.) The surface of the film has been oxidized and the oxide forms a 
thin dielectric layer on it. Finally the superconductor was sputtered once 
again. The final outcome is a so-called superconducting sandwich interlaid 
by a thin insulating sheet. Sandwiches are widely used in observations of 
the Josephson effect. For convenience the two thin superconducting strips 
usually cross each other, see Fig. 23.2. 

F ig . 23 .2 : Josephson 
junc t ion : 1 — metal 
f i lm; 2 — oxide 
l aye r ; 3 — s u b s t r a t e . 

We shall begin with the case when the metallic layers are in normal, 
nonsuperconducting state. Is it possible for electrons to pass from one 
metallic film into another, Fig. 23.3, a? 

c The weak points of our derivation are: first, it is impossible to change the magnetic 
flux in a superconducting ring due to the "freezing" (see later); second, superconducting 
pairs form a quantum collective state and there is no way to pick out a single pair. — 
A. A. 

d B . D. Josephson, (born 1940), British physicist; Nobel Prize 1973. 
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Fig. 23.3: Potential 

energy of electrons in 

tunnel junction 

without voltage. 
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Prom the first sight, not, because of the dielectric in between. The 
dependence of the electron energy versus the x-coordinate (X-axis is per
pendicular to the plane of the sandwich) is plotted in Fig. 23.3, b. Electrons 
in metal move freely and their potential energy is zero. Potential energy 
of electrons in dielectric, Wu, surpasses their kinetic (and total) energy in 
metal We. The work to be done by electrons when exiting to the dielectrice 

is Wu — We > 0. Therefore one says that electrons in the two films are 
separated by the potential barrier of the height Wu — We. 

In case that electrons obeyed the laws of classical mechanics the barrier 
would be insuperable. But electrons are microparticles and specific laws of 
microworld permit many things that would be ruled out for bigger bodies. 
For example neither man nor electron are able to mount a barrier higher 
than their energy. But electron may simply penetrate through it! As if it 
tunneled under a mountain when the energy was not enough to climb it. 
This is called the tunnel effect. Of course you should not take this literally 
like really digging a hole. The true explanation comes from wave properties 
of microparticles and their "spreading" in space. Real deep understanding 
of that requires good command of quantum mechanics. But the truth is 
that with some probability electrons can pass through the dielectric from 
one metal film to another. The probability increases for smaller heights 
Wu — We and widths a of the barrier. 

eThis resembles the heat of evaporation that is the work done when extracting a molecule 
from liquid. 
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Once the dielectric film is permeable for electrons we may ponder of 
electric current flowing through it. At the moment this so-called tunnel 
current is zero: the number of electrons coming to the upper electrode 
from below is equal to that of going back. 

What should we do to make the tunnel current nonzero? Simply to 
break the symmetry. For example let us connect the metal films to a battery 
with the voltage U, Fig. 23.4, o. Then the films will act like two plates of 
a capacitor and the electric field of the strength E = Ufa will set up in 
the dielectric layer. The work done when moving a charge e a distance x 
along the field is A = Fx = eEx — eUx/a and the potential energy of 
electrons takes the form plotted in Fig. 23.4, b. Evidently electrons from 
the upper film (x > a) easier penetrate the barrier because those moving 
from below must jump to the higher level. Therefore even small voltages 
break the balance and give rise to a tunnel current. 

2 f 
mami m W///////A ^ 0 

Fig . 23 .4 : P o t e n t i a l 
energy of e l ec t rons in 
tunnel junc t ion with 
vo l t age . 

Tunnel junctions of normal metals are used in electronic devices but 
don't forget that our aim have been practical applications of superconduc
tivity. The next step is to assume that the metal strips separated by the 
insulating layer are superconducting. How behaves the superconducting 
tunnel junction? It turns out that superconductivity leads to quite unex
pected results. 

We said that electrons in the upper film possess the surplus energy ell 
with respect to the lower one. Upon coming down they must dump the 
energy and come to equilibrium with others. This was not a problem in 
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normal state: several collisions with crystal lattice would redistribute the 
extra energy and convert it to heat. But if the film is superconducting this 
way is not acceptable! It remains to emit the energy in the form of quantum 
of electromagnetic radiation. The energy of the quantum is proportional to 
the applied voltage U: 

huj = 2eU. 

You see that the electric charge in the right hand side is twice that of elec
tron. This indicates that tunnelling of superconducting pairs takes place. 

This was the dazzling prediction by Josephson. Applying constant volt
age to superconducting tunnel junction (sometimes called the Josephson 
junction) brings about generation of electromagnetic radiation. The first 
experimental observation of this effect was performed in 1965 by I. M. Dmitrienko, 
V. M. Svistunov and I. K. Yansons in Kharkov Physical-Technical Institute 
of Low Temperatures. 

The first that comes to mind is to use the Josephson effect for genera
tion of electromagnetic waves. However it is rather difficult to extract the 
radiation from the narrow space between the superconducting films (this 
was a serious obstacle to experimental observation of the effect). Besides 
the emission is too weak. Now Josephson elements are used mainly as de
tectors of electromagnetic radiation being the most sensitive ones in certain 
frequency ranges. 

This application exploits the resonance between the frequency of the 
external (registered) wave and the proper frequency of oscillations in the 
junction under a voltage. The idea of resonance is basic for most of re
ceivers: a set is "tuned in" when the proper frequency of the receiving 
contour is adjusted to that of the station. Josephson junction makes a 
convenient receiving cell. The two advantages are: first, the frequency de
pends on the voltage and is easily varied; second, the resonance being very 
sharp results into high selectivity and precision. Josephson elements were 
employed in the most sensitive detectors for observations of the electromag
netic radiation of the Universe. 

23.3 T h e q u a n t u m magne tome te r 

Josephson effect together with magnetic flux quantization provide a ba
sis for a whole family of supersensitive measuring devices called SQUIDs. 
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This abbreviation stands for Superconducting Quantum Interference De
vices. We shall tell here about the quantum magnetometer that measures 
weak magnetic fields. 

The simplest quantum magnetometer consists of a superconducting ring 
with a Josephson junction, Fig. 23.5. As you know, in order to create a 
current through a normal tunnel contact one must apply some voltage. But 
for a superconducting junction this is not necessary. Superconducting pairs 
may tunnel through the insulating layer and superconducting current may 
circulate in the ring regardless of the Josephson junction. This is called the 
stationary Josephson effect. (In distinction to the nonstationary Josephson 
effect accompanied by emission that was described in the previous section.) 
However the current is limited by a maximal allowable value called the 
critical current of the junction, Ic. Currents exceeding Ic destroy the su
perconductivity of the junction and a voltage drop appears across it. The 
Josephson effect becomes nonstationary. 

<?>ext=0 rext 
a 

4 W =<P/2 
b 

<Pexl=*o/2 
c d 

Fig . 23 .5 : E l e c t r i c 
cur ren t and magnetic 
f lux through 
superconducting r i ng 
with weak l i n k . 

So, insertion of a Josephson junction does not completely destroy su
perconductivity of the contour. Nevertheless a segment of imperfect su
perconductivity, the so-called weak link, appears. It plays crucial role in 
operation of the quantum magnetometer. Let us try to understand this. 

In case that the entire contour was superconducting the magnetic flux 
through it, <J?int> would be strictly constant. Indeed, by the law of electro-
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magnetic induction any change of external magnetic field gives rise to the 
electromotive force of induction, £j = —A$ext/A£, that effects the electric 
current. The change of the current in its own turn generates the elec
tromotive force of selfinduction, £8i = —L A / /A t . The resistance of the 
superconducting contour and the voltage drop in it are zero: 

£i+£si=0, 

and 

At At 

Remember that the magnetic flux through the contour arising due to the 
current I is $i = LI. This means that A$in t = A$ext + A # j = 0 and the 
change of the superconducting current compensates the change of external 
field. The total magnetic flux through the contour remains constant, <&int = 
$ext + $i = const. There is no way to change it without transferring the 
contour to the normal state. The magnetic flux is "frozen". 

What happens if the contour contains a weak link? Then magnetic flux 
through a contour may change since the weak link allows magnetic quanta 
to penetrate inside the ring. (You remember that magnetic flux encircled 
by a superconducting current is quantized and equals a whole number of 
the quanta <l>o) 

Let us watch the magnetic flux through a superconducting ring with a 
weak link and the electric current in it as external magnetic field changes. 
Let the initial external field and current be zero, Fig. 23.5, o. Then the 
magnetic flux through the ring is zero as well. If we enhance the external 
magnetic field a superconducting current will arise and the external flux 
will be completely compensated. This will happen until the electric current 
reaches the critical value Ic, Fig. 23.5, b. To be definite we shall assume 
that this happens when the flux of the external field equals one half of the 
quantum: <J?0/2.f 

As soon as the value of the current reaches Ic the superconductivity 
of the weak link is destroyed and the quantum of magnetic flux $o enters 
the ring, Fig. 23.5, c. The ratio $i n t /$o stepwise increases by unity. (The 

'Critical current depends on many factors and in particular on the thickness of the 
dielectric. It is always possible to fit the latter so that the flux created by the critical 
current has the desired value: LIC = *o/2. This simplifies analysis but does not affect 
essentials. 
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superconducting contour passes to the next quantum state.) And what 
about the current? The value remains the same but the direction reverses. 
Judge for yourself, formerly the external flux was compensated by the field 
of the current: $ j + $ext = —LIC + <J>o/2 = 0. After the quantum has 
entered the ring the current and the external flux add up: <&ext + $ / = 
4>0/2 + LI'C = $o- Thus letting in the flux quantum instantaneously has 
changed the direction of the current. 

As the external field grows further the current in the ring decreases and 
the superconductivity of the junction is restored. When the external flux 
is $ 0 the current disappears at all, Fig. 23.5, d. After that it changes the 
direction again in order to screen the excess of magnetic flux. Finally, when 
the external flux comes to 3$o/2 the current becomes Ic, the superconduc
tivity of the junction is destroyed and one more quantum of magnetic flux 
enters the ring, etc. 

The dependencies of the magnetic flux across the ring, $int> and the elec
tric current / versus the external magnetic flux $ext are shown in Fig. 23.6. 
Both fluxes are measured in magnetic quanta $0 which present the natural 
units. The stepwise shape of the dependence offers a possibility to "count" 
individual flux quanta despite their extremely small (~ 10~15 Wb) magni
tude. The reason is quite clear. Even though the magnetic flux through the 
superconducting contour changes by a tiny amount A<1> = <&0 this happens 
in a very short time At, almost instantly. Therefore the velocity A$/At 
during this abrupt change may be really big. It can be measured, for ex
ample, by electromotive force induced in a special measuring coil of the 
device. This is the principle of operation of quantum magnetometer. 

Construction of a real quantum magnetometer is for sure much more 
complicated. Say, usually not one but several weak links are connected in 
parallel. This gives rise to peculiar interference of superconducting cur
rents (or to be exact of the corresponding quantum waves that determine 
locations of electrons). This helps to increase precision of measurements. 
The collective name SQUID of such devices refers to the interference of 
quantum waves. The sensitive element of a device is inductively coupled 
with an oscillatory contour where the jumps of magnetic flow are converted 
into electric impulses to be amplified later. But these technical subtleties 
are far beyond the scope of the book. 

The fact is that supersensitive magnetometers capable of measuring 
magnetic fields with 1 0 - 1 5 J T accuracy are now widely applied industrial 
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Fig . 23 .6 : Magnetic f lux (a) through 
superconducting r i ng with weak l i n k and e l e c t r i c 
cur ren t (b) in i t as a funct ion of ex te rna l 
magnetic f l u x . 

production. Among other things they are used in medicine. It turns out 
that working heart, brain and muscles create weak magnetic fields. For ex
ample the magnetic induction due to activity of heart is B « 10 - 1 1 T being 
a hundred thousand times less than the field of the Earth. But still these 
fields, whatever weak they are, lie within the reach of SQUIDs. Records of 
rhythms of these fields are called magnetocardiograms, magnetoencephalo-
grams etc. Superconducting facilities offered new possibilities to register 
and study the most delicate signals of human organism. This was a break
through in medical diagnostics of many diseases. 

Experiments in the field started in seventies. In order to minimize the 
influence of the magnetic field of the Earth measurements were carried out 
in specially designed screened chambers. Their walls were made of three 
layers of metal with high magnetic permeability that presented efficient 
magnetic screening plus two layers of aluminum in between for electric 
screening. These precautions provided the means to reduce magnetic field 
inside the chamber to several nanoTesla ( I n T = 10 - 9 T ) that is tens 
thousand times less than that of the Earth. Clearly such chambers costed 
a fortune. Further development of this promising realm of SQUID appli
cations led to remarkable progress and greatly simplified the procedure. 
Modern superconducting technique permits taking a distinct magnetocar-
diogram with no screens at all, Fig. 23.7. The only imperative condition is 
to remove metal clips and the content of your shirt pocket. 
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Fig. 23.7: Modern magnetocardiogram. 

Even the "triple protection" did not eliminate 
traces of the Earth's magnetic Held in magnetocar-
diographic chambers. What could have been other 
objectives of building them? 



Chapter 24 

The superconducting magnets 

Strong magnetic fields can be obtained by passing strong electric currents 
through a coil. The greater is the current the bigger is the field. In case that 
the coil possesses electric resistance heat is released as the current flows. 
Supporting the current requires enormous energy and, besides, a serious 
problem is to carry away the heat which may fuse the coil. In 1937 one 
has first realized a magnetic field with the induction 10 T this way. But 
the field could be supported only at night when all other consumers were 
disconnected from the power station. The liberated heat was removed by 
running water and 5 liters (1.3 gal) of it were brought to a boil every second. 
The heat release sets the main limitation to creating strong magnetic fields 
by ordinary coils. 

As soon as superconductivity was discovered the idea appeared to ex
ploit it in production of strong magnetic fields. At the first sight the only 
thing to be done is to wind up a coil of superconducting wire, send around 
a strong enough current and short the circuit. Once the resistance of the 
coil is zero no heat is released. The gains would justify the work done 
when cooling the solenoid down to the temperature of liquid helium un
less. . . magnetic field destroyed superconductivity. 

The way out was found. The help came from laws of quantum mechan
ics. As you know, in superconductivity those may work on macroscopic 
scales. 

221 
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24.1 The Meifiner effect in detail 

In Fig. 24.1 you may see the scheme of the experiment that was performed 
by Kamerlingh Onnes in 1911 in Leiden. The Dutch scientist put a lead 
coil into liquid helium where it cooled down to the helium boiling point. 
The electric resistance of the coil disappeared because it turned into the 
superconducting state. After that he reconnected the switch and closed the 
coil onto itself. The undamped superconducting began to circulate in the 
coil. 

F ig . 2 4 . 1 : E l e c t r i c 
current can c i r c u l a t e 
in superconducting 
c o i l for years without 
damping. 

The current generates magnetic field with the induction proportional to 
its strength. A naive assumption is that the larger is the current in the coil 
the bigger magnetic field it produces. But the results were discouraging: 
as the field reached several hundredths of Tesla the solenoid passed to 
the normal state and electric resistance appeared. Attempts were done to 
prepare coils of other superconductors but in those again superconductivity 
was destroyed at relatively weak fields. What was the rub? 

The puzzle of such "inconvenient" behavior of superconductors was 
solved in 1933 in the laboratory of W. MeiBner in Berlin. It was found 
that superconductors possess the property of expelling magnetic field; the 
induction inside superconductors is zero. Imagine that a metal cylinder (a 
piece of wire) was cooled and became superconducting. Then one switched 
on a magnetic field with the induction Bext. By the law of electromagnetic 
induction this must cause at the surface of the cylinder circular currents, 
Fig. 24.2. The magnetic field S c u r created by the currents inside the cylin-

battery 

liquid He , '• ^j 
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der is equal to _Bext in magnitude but opposite in direction. The currents 
are superconducting and do not die out. Therefore the net induction in 
superconductor is zero: B = 2?ext + J5cur = 0. Lines of magnetic induction 
do not penetrate superconductors. 

F ig . 24 .2 : Surface 
cu r ren t s keep magnetic 
f i e l d out of 
superconductor of the 
f i r s t t ype . 
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But what if we change the order and apply the field before cooling 
the specimen to superconducting state? It seems that the magnetic in
duction will not change and there will be no point in generating surface 
currents. This was the logic of Meifiner when he checked calculations by 
Lauea concerning the first experimental procedure. But still he preferred to 
check. The result of the renewed experiment was stunning. It turned out 
that magnetic field was just the same forced out of superconductor without 
penetrating it. This was called the Meifiner effect. 

Now it is clear why magnetic field destroys superconductivity. Exciting 
surface currents takes energy. In this sense superconducting state is less 
favorable than normal one when magnetic field enters the bulk and there 
are no surface currents. The higher is the induction of external field the 
stronger screening current it demands. At some value of magnetic induc
tion the superconductivity inevitably will be destroyed and the metal will 
transform to normal state. The value of the field when the destruction of 
superconductivity occurs is called the critical field of the superconductor. 
It is important that presence of external field is not a necessary condi
tion of the destruction. Electric current in the superconductor produces a 

*M. von. Laue, (1879-1960), German physicist; Nobel Prize 1914. 
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magnetic field of its own. When at certain intensity of the current the in
duction of the field reaches the critical value the superconductivity breaks 
down. The value of critical field increases at low temperatures but even 
near the absolute zero critical fields of pure superconductors are modest, 
see Fig. 24.3. So it could seem a vain hope to obtain strong magnetic fields 
with the help of superconductors. 

jUfc*»V 

0 2 4 B T,K 

Fig. 24.3: Critical 
magnetic field grows 
at low temperatures. 

But further investigations in the field proved that the situation is not 
desperate. It was found that there is a whole group of materials that stay 
superconducting even in very strong magnetic fields. 

24.2 The Abrikosov vortices 

As it was already mentioned above, in 1957 the prominent theoretical physi
cist A. A. Abrikosovb showed that magnetic field does not destroy super
conductivity of alloys so easily. Similarly to the pure case magnetic field 
begins penetrating into superconductor at some critical value of induction. 
But in alloys the field does not occupy the entire volume of the supercon
ductor at once. At first only detached bundles of magnetic lines are formed 
in the bulk, Fig. 24.4. Every bundle carries an exactly fixed portion. It is 
equal to the quantum of magnetic flux, $ 0 = 2 - 1 0 - 1 5 Wb, that we have 

bA. A. Abrikosov, (born 1928), Russian physicist, pupil of L. D. Landau, specialist in 
condensed matter physics. 
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The stronger is the magnetic field the more bundles enter the super
conductor. Each of them brings one magnetic quantum and the total flux 
changes stepwise. Again, like before, magnetic flux through superconductor 
may take only discrete values. It is astonishing to see the laws of quantum 
mechanics "working" on macroscopic scales. 

Each bundle of magnetic lines piercing the superconductor is enveloped 
by undamped circular currents that resemble a vortex in gas or liquid, 
Fig. 24.4. For this reason the bundles of magnetic lines together with the 
superconducting currents around it are called Abrikosov vortices. Certainly 
in the core of the vortex the superconductivity is broken. But in the space 
between the vortices it is conserved! Only in very strong fields when nu
merous vortices begin overlapping the superconductivity is destroyed com
pletely. 

This remarkable reaction of superconducting alloys to magnetic fields 
was first discovered "at the tip of the pen". But modern experimental 
technique makes it possible to observe Abrikosov vortices directly. Fine 
magnetic powder is applied to the surface of superconductor (for example, 
to the base of a cylinder). The particles gather at the places where the field 
enters the alloy. Electron microscope study of the surface reveals the dark 
spots. 

Such a photograph of the structure of Abrikosov vortices is shown in 

cIt would be quite natural to say that each magnetic quantum corresponds to one line 
of magnetic induction. —A. A. 
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Fig. 24.5. We notice that the vortices are arranged periodically and form 
a pattern similar to a crystal lattice . The vortex lattice is triangular (this 
means that it is can be made up of periodically repeated triangles). 

So, in distinction to pure metals alloys, possess not one but two criti
cal fields: the lower critical field marks the moment when the first vortex 
enters the superconductor and the upper critical field corresponds to the 
completely destruction of superconductivity. Over the interval between 
these two the superconductor is pierced by vortex lines. This is called the 
mixed state. Superconductors exhibiting such properties are now called 
the second type ones. The first type refers to those where the magnetic 
destruction of superconductivity happens at once, abruptly. 

It looked that the problem of producing superconducting magnets was 
solved. But nature had kept for researchers one more catch. The wire for 
superconducting solenoids must withstand not only strong magnetic field 
but strong electric current as well. This happened to be not the same. 
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24.3 What is pinning? 

It is well known that a force acts onto electric current in magnetic field. 
But where is applied the counteraction force that must appear by the third 
Newton law? When the field is due to another current then, no doubt, 
that experiences an equal in magnitude and opposite in direction force 
(interaction of energized conductors obeys the Ampered law). Our case is 
more exquisite. 

A current that flows in a mixed state superconductor interacts with 
the magnetic field in the cores of vortices. This affects the distribution of 
current but the domains where the magnetic field concentrates do not re
main intact either. They start moving. Electric current compels Abrikosov 
vortices to move! 

The force exerted onto a current by magnetic field is perpendicular 
to the magnetic induction and to the conductor. The force acting onto 
Abrikosov vortices is also perpendicular to the induction of the field and 
to the direction of the current. Suppose that a current traverses the su
perconductor depicted in Fig. 24.5 from left to right. Then the Abrikosov 
vortices will move either up- or downwards depending on the direction of 
the magnetic field. However the transport of the Abrikosov vortex across 
superconductor is the motion of the normal non-superconducting core. It 
suffers a sort of friction which brings on heat evolution. Current in the 
mixed state superconductor just the same meets a resistance. It could look 
like these materials were no good for solenoids. 

What is the solution? It is to block the motion and hold the vortices 
in place. Fortunately this is possible. One has simply to worsen the super
conductor by making defects in it. Usually defects appear by themselves 
as a result of mechanical or thermal treatment. Fig. 24.6 demonstrates an 
electron microscope photograph of niobium nitride film. The critical tem
perature of the film is 15 K. It was obtained by means of sputtering metal 
onto glass plate. One clearly discerns the granular (or rather columnar) 
structure of the material. It is not so easy for a vortex to jump the bound
ary of a grain. Hence up to a certain current strength, the so-called critical 
current, vortices stay in place and the electrical resistance is zero. 

This phenomenon is known as pinning, because of vortices being pinned 

d A . M. Ampere, (1775-1836), French physicist, one of the foundators of classical elec
trodynamics. 
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by defects. 
Pinning offers a possibility to prepare superconducting materials ex

hibiting high critical values of both magnetic field and electric current. 
(It would be more accurate to speak not of critical current but of critical 
current density, that is the current crossing a unit area of cross section.) 
Critical field is determined by properties of material. In the mean time 
critical current depends on methods used in preparation and treatment of 
conductor. Modern technology provides a means to obtain superconductors 
with high values of all critical parameters. For example, starting from the 
tin-niobium alloy one can fabricate a material with the density of critical 
current reaching several hundreds amp/cm2, the upper critical field equal 
to 25 T and the critical temperature being 18 K. 

But this is not the end of the story. It is important whether mechanical 
properties of the material permit to make a coil. The tin-niobium alloy 
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by itself is too fragile and it would be impossible to bend such a wire. So 
the following procedure was invented: a copper tube was stuffed with a 
mixture of niobium and tin powders, then the tube was stretched into a 
wire and the coil was wound and at last heating the coil made the powders 
fuse. This resulted into a solenoid of the Nb3 Sn alloy. 

Industry prefers more practical materials such as the more plastic niobium-
titanium alloy NbTi. It is used as a base for so-called composite supercon
ductors. 

First one drills in a copper bar a number of parallel channels and inserts 
there superconducting rods. Then the bar is stretched into a long wire. The 
wire is cut and the pieces inserted into another drilled copper bar. That 
is once more stretched, cut into pieces and so on. . . Finally one obtains 
a cable that contains up to a million of superconducting lines, like those 
shown in Fig. 24.7. This is used for winding coils. 

The important advantage of such cables is that the superconducting 
current is distributed among all the lines. When compared to supercon
ductor copper behaves like an insulator. If copper and superconductor are 
connected in parallel then the entire current will choose the path that has 
no resistance. There is the second advantage. Suppose that by accident 
superconductivity breaks down in one of the lines. This causes heat liber
ation and the danger that the whole cable will pass to the normal state. 
It is urgent is to remove the heat. Copper is a good heat conductor and 
perfectly suits the purpose of thermal stabilization. Besides it secures good 
mechanical properties of cables. 

Postscriptum for taxpayers 

After having started with the high-temperature thriller we turned to ap
plications of conventional superconductors. Here, in contrast to high-
temperature ones, the physics of the phenomenon is clear. Nevertheless the 
lack of theoretical understanding does not stop search for practical appli
cations of high-temperature superconductors. The main stumbling block 
are bad technological properties of available high-temperature supercon
ductors: they are extremely brittle and do not stand rolling which is an 
essential element of mechanical treatment of metals. Nevertheless several 
brands of some kilometers long high-temperature superconducting cables 
are already on the market. They are produced by rolling and annealing of 
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a tube of silver or other suitable metal filled by high-temperature super
conductor powder. A number of experimental underground transmission 
lines made of such cables are in operation now in France and in USA. The 
first electric motors and generators based on high-temperature supercon
ductors are under testing. There is no doubt that the field of applications 
of these materials will expand and new more practical high-temperature 
superconductors will appear. 

Let us turn to prospects. Those are really fantastic. Many of global 
projects of the past are put back onto agenda because the advent of high-
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temperature superconductivity makes them profitable. For example, at 
present 20-30% of all produced electrical energy is wasted in power trans
mission lines. Using high-temperature superconductors for energy trans
mission could eliminate these losses. 

All projects involving thermonuclear synthesis need giant superconduct
ing magnets that keep high-temperature plasma away from the walls of the 
chamber. Streams, if not rivers, of liquid helium are necessary to maintain 
the superconducting state. The helium would be replaced by nitrogen at a 
tremendous cost saving. 

Gigantic superconducting coils would serve as accumulators of electrical 
power, which would share the load during peak periods. 

Supersensitive equipment for making magnetocardiograms and mag-
netoencephalograms, based on the use of superconducting Josephson el
ements, would come to every hospital. 

Magnetic cushions created by superconducting coils would support in
tercity express trains commuting at speeds of 400 — 500 km/h. 

A new generation of supercomputers based on superconducting elements 
and cooled by liquid nitrogen would be constructed. 

Don't think we've lost our heads over high-temperature superconductiv
ity. Since its discovery, the ardor of many investigators has notably cooled 
down. The same happens when an Olympic record stays out of reach for 
years. But as soon as the record has been set it serves a benchmark. The 
possibility of producing materials with unique characteristics has been con
firmed. Certainly not once economic considerations will affect realization 
of projects and it is not tomorrow that we will surpass the records and 
make them a routine. But today we know for sure that the impossible has 
become accessible. And this has irreversibly changed the reference point in 
our attitude toward superconductivity. 

Why superconducting transmission lines do not re
quire expensive high-voltage equipment? 





Afterword 

Little by httle our tale about physics came to the end. We told you how 
physics helps to explain so many things all around us. Remember me
andering rivers and the blue sky, think of coalescing droplets and hissing 
tea-kettles, don't forget the singing violin and the chime of goblets. Still 
the magic of physics is not solely the power to explain what happens but 
the ability to foresee what will happen even if it never has before. This 
gained physics the head position in scientific and technical progress of our 
days. 

Modern physics has opened to us the amazing quantum world. There 
prisoners of potential wells flee away from their dungeons like the Count 
of Monte Cristo; magnetic fields make vortices to pierce superconductors; 
volatile amalgam of wave and particle entities of light quanta brings to 
mind mythical centaurs. Wonders of the quantum world are beyond imag
ination. But using its mathematical arsenal theoretical physics succeeds 
to describe behavior of quanta so accurately that results of experiments 
exactly coincide with theoretical predictions. This capability to correctly 
represent phenomena which escape even mental visualization was, in the 
opinion of the world-known physicist L. D. Landau, the greatest triumph 
of theoretical physics of twentieth century. 
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