FisicaNET

MECÂNICA QUÂNTICA



EFEITO FOTOELÉTRICO

Índice

  1. Formas de Radiação: Emissores de Luz
  2. Espectros e Instrumentos Espectrais
  3. Tipos de Espectros
  4. Análise Espectral
  5. Radiação Infravermelha e Ultravioleta
  6. Os raios-X
  7. Escala de Radiações Eletromagnéticas
  8. Afinal, o que é o efeito fotoelétrico?
  9. Teoria do Efeito Fotoelétrico
  10. Fótons
  11. Aplicações do Efeito Fotoelétrico
  12. Pressão da Luz

 

9.Teoria do Efeito Fotoelétrico

    Não resultou nenhuma das tentativas, feitas no sentido de explicar o efeito fotoelétrico com base nas leis de Maxwell ( segundo as quais a luz é uma onda eletromagnética distribuída continuamente no espaço). Era impossível compreender porque é que a energia dos elétrons fotoelétricos é determinada apenas pela frequência da luz, nem perceber a causa pela qual só quando o comprimento de onda é pequeno a luz se torna capaz de arrancar elétrons.

    O esclarecimento do efeito fotoelétrico foi dado em 1905 por Alberto Einstein que desenvolveu a idéia de Planck sobre a emissão intermitente de luz. Nas leis experimentais do efeito fotoelétrico, Einstein viu uma prova evidente de que a luz tem uma estrutura intermitente e é absorvida em porções independentes. A energia E de cada uma das porções de emissão, de acordo com a hipótese de Planck, é proporcional à frequência.

E = hf , onde h é a constante de Planck. ( 1 )

    O fato de, como provou Planck, a luz ser emitida em porções, ainda não constitui uma confirmação definitiva do caráter descontínuo da estrutura da própria luz. Repara-se que a chuva também cai na terra sob a forma de gotas, o que não quer dizer que a água nos rios e lagos seja constituída por gotas, isto é, quantidades pequenas independentes. Apenas o efeito fotoelétrico permite pôr em evidência a estrutura descontínua da luz: a porção de energia luminosa E = hv contínua a manter a sua integridade, de tal modo, que essa dada porção de luz, quando é absorvida, tem de absorver-se toda de uma vez. A energia E de cada uma das porções de emissão é dada pela fórmula ( 1).

    A energia cinética do elétron fotoelétrico pode ser calculada aplicando a lei da conservação de energia. A energia de uma porção de luz , hf permite realizar o trabalho de arranque W, isto é, o trabalho indispensável para arrancar um elétron do seio do metal e comunicar-lhe uma certa energia cinética. Por conseguinte,

     ( 2 )

    Esta equação permite esclarecer todos os fatos fundamentais relacionados com o efeito fotoelétrico. A intensidade da luz, segundo Einstein, é proporcional ao número de quantos (porções) de energia contido no feixe luminoso e, por conseguinte, determina o número de elétrons arrancados da superfície metálica. A velocidade dos elétrons, conforme ( 2) , é dada apenas pela frequência da luz e pelo trabalho de arranque, que depende da natureza do metal e da qualidade da sua superfície. Atenda-se a que a velocidade dos elétrons não depende da intensidade da luz.

    Para uma dada substância, o efeito fotoelétrico pode observar-se apenas no caso de a frequência f da luz ser superior ao valor mínimo f min . Convém reparar que para se poder arrancar um elétron do metal, mesmo sem lhe comunicar energia cinética, há que realizar o trabalho de arranque W. Portanto, a energia de um quanto ( quantum) deve ser superior a este trabalho:

hf > W

    A frequência limite f min tem o nome de limite vermelho do efeito fotoelétrico e calcula-se pela seguinte fórmula:

    O trabalho de arranque W depende da natureza da substância. Portanto, a frequência limite f min do efeito fotoelétrico ( dito limite vermelho) varia de substância para substância.

    Por exemplo, ao limite vermelho do zinco corresponde o comprimento de onda l max = 3,7 . 10-7 m ( radiação ultravioleta). É precisamente por isso se explica o fato de efeito fotoelétrico cessar quando se interpõe uma lâmina de vidro, capaz de deter raios ultravioletas.

    O trabalho de arranque no alumínio ou no ferro é maior do que no zinco, razão por que na experiência de 1 se utilizou uma lâmina de zinco. Nos metais alcalinos, pelo contrário, o trabalho de arranque é menor, ao passo que o comprimento de onda l max correspondente ao limite vermelho é maior. Assim, por exemplo, relativamente ao sódio verifica-se l max = 6,8 . 10-7 m.

    Através da equação de Einstein ( 2) é possível calcular a constante de Planck h. Para tal há que determinar experimentalmente a frequência v da luz, o trabalho de arranque W e avaliar a energia cinética dos elétrons fotoelétricos. Avaliações e cálculos apropriados mostram que h = 6,63 x 10-34 J.s. O mesmo valor numérico foi obtido por Planck durante o estudo teórico de outro fenômeno diferente que é a radiação térmica. O fato de terem coincidido os valores da constante de Planck obtidos por métodos diferentes, confirma a certeza da hipótese acerca do caráter descontínuo da emissão e absorção da luz pelas substâncias.

 

 

 

 

Acesse também as seções: